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1 Introduction
Isolated Majorana bound states provide robust quantum information storage, but the number
of possible topologically protected quantum operators is very limited, thus making them less ef-
fective for quantum information processing. A promising alternative is to use parafermions, the
generalization of Majorana fermions. Generally speaking, braiding of parafermionic zero modes
leads to a richer set of possible unitary transformations acting on the degenerate ground state
manifold compared to what is possible with Majoranas, but it requires the presence of strong
interaction. The study of these interaction-enabled phases has focused either on microscopic
models derived from prototypical clock models, resulting in interaction and superconducting
terms that are hard to reproduce experimentally in the Hamiltonian, or on an effective field
theoretical description employing a bosonized framework [1–3].

The overarching theme of my research plan is to investigate microscopic models of topo-
logical superconductivity in the presence of interactions, focusing on systems with explicit
experimental relevance, hosting topologically protected zero energy modes.

I envisaged two objectives for my research plan:

• I: Zero modes at the interface of topological insulators and superconductors

• II: Nanowires for interaction enhanced topological qubits

In this first semester, I focused my effort on Objective I.

2 Research work carried out in current semester

2.1 Model and numerical background

My goal is to create a microscopic model capable of describing the edge states of topological
insulators in the presence of superconductivity and interaction, without the massive bulk. One
of the simplest ways to do it is to start with a ladder-like lattice model ( with 2×N sites for
some N ∈ N) which is, in the low-energy limit, equivalent to the Hamiltonian of the edge states
of a topological insulator. Because of this, I took the kinetic Hamiltonian

Hkin =
∑
n,σ

[
c†n,L,σ c†n,R,σ

] [−µ t
t −µ

] [
cn,L,σ
cn,R,σ

]
− t

2

∑
n,σ

([
c†n+1,L,σ c†n+1,R,σ

] [iσ 1
1 −iσ

] [
cn,L,σ
cn,R,σ

]
+ h.c.

)
, (1)

where t is a real parameter, µ us the chemical potential, n ∈ N is the site degree of freedom,
ζ ∈ {L,R} is the newly introduced "side" degree of freedom (that is, our model can be imagined
as a ladder), and σ is the spin (with ↑= 1, ↓= −1 convention).

The s-wave superconductivity is taken into account via Cooper-pair creation and annihila-
tion, that is

Hsc =
∑
n,ζ

∆n,ζ

[
c†n,ζ,↑c

†
n,ζ,↓ + h.c.

]
. (2)

There are two interaction terms I used; They can be written as

H
(1)
int =

∑
n,ζ

V
(1)
n,ζ

[
c†n,ζ,↑cn,ζ,↓c

†
n+1,ζ,↓cn+1,ζ,↑ + h.c.

]
, (3)
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H
(2)
int =

∑
n,ζ

V
(2)
n,ζ

[
c†n,ζ,↑cn,ζ,↓c

†
n+1,ζ,↑cn+1,ζ,↓ + h.c.

]
. (4)

Both of these interactions conserve time-reversal symmetry. The second interaction H
(2)
int was

suggested in [4], and H
(1)
int is a simplified version of it. I started to work with H

(1)
int first, because

it conserves the total spin z component, making the calculations faster.
Considering a model with explicit superconductivity and complicated interactions, the only

possible Abelian quantum numbers are the spin projection and the particle parity. Even though
the limited number of quantum numbers foreshadow challenges in the accurate numerical treat-
ment of the problem, I found that the substantial gap induced by the interaction makes the
simulations rather manageable even for ladders with reasonable size.

In the numerical calculations, I was using Python (for exact diagonalizations of non-interacting
systems), and the ITensor program’s [5] Density Matrix Renormalization Group (DMRG) al-
gorithm [6] implemented in Julia language.

2.2 Identifying the phase diagram

The phase diagram is scanned on a system with length N = 40, with one leg of the ladder
having interaction in the middle (with length N2 = 20) and superconductivity on its ends (with
lengths N1 = N3 = 10), and the other having superconductivity only (with, of course, both
sides having the kinetic term present). These calculations were relatively fast (each parameter
point took about 1-2 hours and they were able to run parallel), as it only needed the ground
state. A sketch of this configuration can be seen in Figure 1. Phase transitions were detected
by studying the maximum matrix dimension of the DMRG calculations (maxlinkdim in the
figures) which is, similarly to entropic quantities, strongly related to the correlation lengths.

The phase diagram of the interactions H(1)
int and H

(2)
int can be seen in Figure 1, with U (1) and

U (2) denoting the appropriate interaction strength. This system has 4 different phases: the
weak interaction phase, where the system is metallic (denoted by W); the strong interaction
phase (denoted by S), where the system is gapped and there is no degenerate ground state; and
the two separate fourfold degenerate regimes (denoted by 4×(1) and 4×(2) for the appropriate
interaction).

Figure 1: The system used for the phase diagram calculations (left), and phase diagram of the
two interactions (right).
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2.3 Characterization of the degenerate phase

As can be seen in the previous section, four-fold degenerate ground states can be identified for
intermediate couplings for both kind of interactions. Furthermore, I found that these degenerate
states are localized at the domain walls. Even though, this high degeneracy does indicate the
presence of localized zero energy modes they are not necessarily of parafermionic nature. In
fact, their conclusive description can be given by an analysis based on the periodicity of the
Josephson spectrum.

The Josephson effect is a current that might be observed between two superconductors
separated by a thin insulating barrier at zero voltage. The magnitude of the current is tuned by
the phase difference of superconducting segments. Correspondingly, I studied the characteristic
phase of model to identify the nature of the observed four-fold groundstate, i.e., for Majorana
zero modes and parafermionic states 4π and 8π periodicity is expected [7, 8].

Accordingly, I studied the Josephson spectrum of several different systems, looking for the
wished parafermions. The result of a calculation using a system with 4 domain walls with
interaction H

(2)
int (due to parity conservation, only the even case is shown) is shown in the right

of Figure 2, while a sketch of the system is shown in the left. The right leg of the system
is characterized by superconductivity, and the left leg has superconductivity (length N1), in-
teraction (length N2), superconductivity with phase φ (length N3), interaction (length N4)
and finally superconductivity again (length N5). The parameters of the system are ∆ = 1,
(N1, N2, N3, N4, N5) = (20, 8, 20, 16, 16) and V (2) = 2.25. Note that only two branches are visi-
ble because both of them are fourfold degenerate and each energy is shifted by the mean energy
of the studied submanifold of eight states. From the figure, we conclude a characteristic 4π
periodicity, which implies that these states are not parafermions but weakly coupled Majorana
zero modes.

Figure 2: The sketch of a system having four domain wall system with interaction H
(2)
int (left),

and its Josephson spectrum with parameters ∆ = 1, (N1, N2, N3, N4, N5) = (20, 8, 20, 16, 16),
V (2) = 2.25 (right).
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3 Publications
In this semester, I was working on my first paper, however, it is still in progress. I also started
to examine a different interaction proposed in [7], having the form

H
(3)
int =

∑
n,ζ

V
(3)
n,ζ

[
c†n,ζ,↑cn,ζ,↑ + c†n,ζ,↓cn,ζ,↓

]2
. (5)

However, the calculations using the interaction H
(3)
int are still in the early stage. Because of this,

there is no figure in this report concerning that interaction, but it can be expected in both the
next semester’s report and the article.

4 Studies in current semester
I attended two classes in the current semester:

• "Matematikai módszerek a kvantumkémiában I." (subject code: "FIZ/3/034E")

• "Kvantumbitek szilárdtestekben" (subject code: "FIZ/1/041E")

5 Conferences in current semester
I attended the "Lectures on Modern Scientific Programming 2022" conference, hosted by the
Wigner Scientific Computing Laboratory.

I am going to attend "American Physical Society’s March Meeting", where I will present a
contributed talk about my latest results.

6 Teaching activity in current semester
In the current semester, I participated as a lecturer (for 1 class/week, i.e. 2 hours/week)
in the practice class "Számítógépes alapismeretek" (with subject codes "szamalapf18la" and
"szamalapf19la"), which is an introductory course into Linux basics, LATEX, and python for
first-semester Physics BSc students.
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