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Introduction: 

For two different directions: 

1. Zero risk describes an investment or security in which the return is known with certainty. 
Under No-short model, zero risk results have been produced with probability by 
optimization. To dig out the boundary of zero risk which has 50% ratio, Now we focus on 
the relation between r = N/T and zero risk boundary rc i.e., r at the solution of optimization 
which has 50% zero risk. For simplicity, we assume that the returns are independent 
Gaussian random variables with zero expectation value and variance is σi. The behavior at r 
≤ 2 was discussed by I. Kondor et al, which also indicate that rc = 2. However, the behavior 
at r > 2 is unknown, that is what we concern about. It is natural to assume that stocks of 
companies belonging to a given industrial sector are more strongly correlated than those 
belonging to different sectors. Accordingly, we expect that the covariance matrix displays a 
block diagonal structure. For simplicity, we assume that the elements outside the diagonal 
identity (that describe some general correlation with the whole market) are all equal to ρ, and 
− 1 < ρ ≤ 1. The relation among zero risk, proportion of zero weights n0 and ρ at r > 2 is  an 
interesting point for discussion. 

2. The other work is about application of neutral network in Lattice QCD. In high energy 
theory, the hadron spectral function is a key as which encodes all the information about the 
hadron. Topically, the relation between spectral function and correlation function is given by 
the well known Källen-Lehmann spectral representation. However, calculating the 
correlation function from a given spectral function is straightforward, but the inverse is an ill-
condition problem, because the correlation function is the integration with the spectral 
function multiplied by an integral kernel in frequency space. Fortunately, the data of 
correlation function can be computed directly from experiments of Lattice QCD, which helps 
us to reconstruct spectral function. Here we propose a new approaching to reconstruct 
spectral function based on neural network. The advantage of this method is that it can fit any 
functions with high precisions, but the key is that the output depends on the training dataset. 
In order to ensure that the network’s results have real physical meaning, we divide the 
spectral function into three parts: transport, resonance and continuum. In addition, by 
comparing the results with maximum entropy method(MEM) method, the reconstruction 
accuracy is found to be at least comparable, and potentially superior in particular at larger 
noise levels.  
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Description of research work carried out in current semester: 

1. By setting zero risk rate as function of r for various values of N, a comparison between N = 
100, N = 200 and N = 300 with fixed ρ, which clear show that rc is related with N and 
increases with ρ. To study the relation between rc and N, we introduce a virtual sample size 
Nf  as a ruler to measure real size N. And a virtual covariance matrix element ρ0 is built as ρ 
= ρ0N/Nf . Where ρ is the real covariance matrix element as before. By a fixed Nf , ρ becomes 
a scale of N and ρ = ρ0 when Nf = N. Here a limitation is clearly that Nf ≤ N to keep the 
constraint of real covariance matrix element 0 ≤ ρ ≤ 1 from virtual one 0 ≤ ρ0 ≤ 1. As large 
bias are generated in numerical calculation when we choose small T for r ∼ N and ρ ∼ 1, so 
we only consider the results for ρ ≤ 0.7. To collect all rc with Nf = 100 fixed, a linear function 
of ρ0 can be fit to rc. Then by testing the results of Nf =200, Nf =300 and Nf =400, a more 
general law can be addressed: rc ≈ 0.29 × Nfρ0 + 2. From above, it cleanly shows that zero 
risk boundary rc depends on the virtual sample size Nf  and virtual covariance matrix element 
ρ0, which means it is stable without the effects of sample size N but only ρ. Theoretically, the 
peak value of n0 and zero risk boundary coincide with same r. However, each of them 
corresponds to different value as a function of r in numerical calculation and r corresponding 
to peak value of n0 are usually smaller rc. To find the “real” n0 at rc, an effective method is to 
distinguish the “true” data which risk is not zero from zero risk values. Some good results  
come out for discussion from this “true” n0, but the behavior between n0 and ρ is still on 
working. 

2. First principle lattice QCD has been a useful tool to study the in-medium properties of 
hadrons as well as the transport properties of the medium. However, despite the importance 
of the spectral functions to understand in-medium behaviors of the strong interaction matters, 
the spectral functions cannot be calculated directly using lattice QCD. Instead, what one can 
calculate is the Euclidean correlation function, G(τ, p), which is related to the spectral 
function, ρ(ω). Practically, the correlation function is only given at O(10) discrete imaginary-
time distances, τ, with some errors while, at least O(1000) data points in frequency, ω, are 
needed for sufficiently good resolution of the spectral function. This is a typical ill-posed 
problem. The inverse problem as defined has an exact solution in the case of exactly known, 
discrete correlator data. However, as soon as noisy inputs are considered, this approach turns 
out to be impractical. Therefore, the most common strategy to treat this problem is via 
Bayesian inference. The Gaussian Mixture Model (GMM) is a powerful method commonly 
used in statistics. The GMM attempts to fit the mathematical quantity by generating a certain 
number of prior probabilities which satisfy the Gaussian distribution. The objection of 
GMM is to find out the mean and standard deviation of all these Gaussian distributions. 
From the loss function of G(τ, p) which contains three condition probabilities P (ρ|z), Q(z|ρ, 
G) and P (z|G’), so we can assume all of them as Gaussian distribution To solve this 
problem, we introduce neural network alternative to these conditional probabilities. In 
theory, if we succeed in finding networks alternative to P(ρ|z), Q(z|ρ,G) and P(z|G’), then the 
result of GMM models is achieved. However, the prior probability P(z) is unknown. As we 



assumed before, z depends on ρ, so it can be directly generated from ρ as an intermediate 
variable. Our purpose is to reconstruct ρ from training data of ρ by the intermediate z, which 
is similar to the process of Variation Autoencoder(VAE). By testing and building different 
constructions of network, finally we found good results for both pseudoscalar and vector 
channel and compare them to the model of maximum entropy method(MEM) and default 
model(DM). It shows the peak location in different models are all in the range of systematic 
error and statistical error district from DL method. As we know, MEM result is close to bare 
mass, however that of DL network is comparable to physical mass. Thus, both results of 
MEM and DL are acceptable. By cooperation with Shiyang Chen from Central China 
Normal University, most of that work have been done and the paper is on writing.  
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