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Introduction:

Solid-state  physics  and  materials  science  physics  is  at  the  forefront  of  today's  emerging
technologies. New exotic materials, such as graphene and topological materials, have ushered in a
significant  development  in  technological  areas,  from molecular  sensors  to  nanoscaled  energy
harvesters, from ultra-dense and ultra-fast classical computer memories to architectural elements
in a future quantum computer. The constituent electronic and magnetic degrees of freedom in
these materials give rise to emergent quantum states with interesting properties, making them
ideal candidates for a variety of novel applications. During my PhD research, I will attempt to
build  new theoretical  tools  in  order  to  better  comprehend  the  outcomes  of  experiments  with
unusual materials. The research will be based on the following tree pillars: 1. First-principles
modeling of exotic nanomaterials, 2. Development of simple analytic toy models and effective
theories, 3. Calculation of experimentally relevant electronic and magnetic properties.

Summary of research work carried out in the previous three semesters:

When applied to an interacting electron system, the Hubbard model yields qualitative predictions of
some of the system's properties. Although the mean-field approximation is not a perfect solution, it
is  a  useful  tool  for  investigating  certain  aspects  of  the  Hubbard  model,  such as  the  nature  of
electronic excitations and the magnetic phase diagram. Working with it will thus provide us with a
tool  for  describing  those  systems.  The  many-body  Hubbard  model  is  transformed  into  a  non-
interacting problem using the mean-field approximation. However, it has a cost and the problem
should  be  resolved selfconsistently.  The meanfiled  approximation  also  allows  you to  solve  the
problem in reciprocal space, which makes the computational effort more easier. The magnetic phase
diagram can be built from the mean-field solution.

Hubbard model was the center point of my work. The reason for choosing the Hubbard model is
that it is an excellent tool to understand the realistic magnetic interactions. I reproduced the results
from [1], Which is shown in Fig 1. I was able to create a phase diagram by mapping the parameter
space spanned by the occupation number and interaction strength U, the boundaries of the phasese (
ferromagnetic,antiferromagnetic and paramagnetic) can be concluded from the crossing points in
Fig 2. While in Fig 2. the three magnetic patterns investigated, I represent the free energy in terms
of Coulomb repulsion for a fixed occupation number, we can see where the system flip (at t/U =
0.13) from ferromagnetic configuration at large U to antiferromagnetic at small U based on its free
energy behavior.

Flat bands occur in topological system's that are of interest. As in 2D graphene and 3D nodal line
semimetals (ABC graphite is a simple example). An experimental physics team at Wigner Research
Institute (Péter Nemes-Incze's group) ,the group conducts experiments on the surface state of ABC
graphite. They looked for possible surface magnetism signatures. Splitting of the surface flat band
was observed in some samples.

For approaching this problem, we used the SIESTA code to create a self-consistent Hamiltonian
based  on  DFT  calculations.  Then,  extracting  Heisenberg  model  parameters  from  ab  initio
calculations. Despite the fact that the Heisenberg model stated that the magnetic configuration in
question  is  the  true  ground state,  the  calculated  critical  temperature  was  much lower  than  the



experimentally observed one. In order to performe this calculations I used a code provided by my
supervisor[2] and made appropriate changes.

We've done more DFT calculations at this stage, which indicate that a simple Heisenberg model
might not be able to explain the structure. At this point, we're looking for a model that will work
well in our situation. Fig. 2 shows the this is the spatial dependence of the exchange coupling.

I applied the knowledge I gained from studying the Hubbard model on a square lattice to graphene
nanoribbons as well. To investigate the exchange interactions, we first constructed the Hamiltonian
for graphene nanoribbons. Graphene nanoribbons host specific edge states with zero kinetic energy
as well, making them an ideal venue for localizing magnetic degrees of freedom. Since the kinetic
energy of the electrons at such sites is almost zero compared to the bulk electrons, it is expected the
interaction will alter these states leading possibly to form some magnetic behavior  . The ultimate
goal is to investigate how Heisenberg model parameters that describe a mapping to classical spins
describe edge magnetism in these topological systems [3]. 

Figure 1: Ground-state phase diagram of the Hubbard model on a square lattice as a
function of the ratio t/U and of

the electron filling (where t refers to hopping amplitudes).



Figure 2: . A phase transition occurs where magnetic-energy
curves cross each other. For n=0.8 the system becomes

ferromagnetic below t/U = 0.13.

Figure 3: Calculated exchange coupling of the surface atoms of
ABC graphene, based on reference ground state obtained from a

first principles calculation performed by SIESTA. 



Technical background:

1. Hubbard model.

Itinerant,  interacting  spin  
1
2

 electrons  hopping  on  a  set  of  spatially  confined  orbitals  are

described by the Hubbard model. The Hamiltonian is written as:

ĤH=−∑
ijσ

t ij Ĉ iσ
† Ĉ jσ+U∑

i

n̂i↑ n̂i ↓

Ĉiσ
†  is  an operator that represents the creation of a spin electron  σ at site  i,  Ĉiσ  is  an

operator  that  represents  the  annihilation  of  a  spin  electron  at  site  j,  and  tij  is  the  process'

amplitude, the so-called hopping amplitude from site j to site i where the electron is generated.

Finally,  the  sum over  ij  ,  and tij = (t ij)
∗ ,  implying that  the  Hamiltonian  is  hermitian,  as  it

should be. U represent the on-site Coulomb repulsion.

To obtain the complete mean-field solution, we first discuss the tight-binding solution for U = 0, 
and then examine the action of the H  term in mean-field. In both cases, we can apply a Fourier 
transform to the k-space to fully exploit the 2-dimensional periodicity.

2. Mapping to Heisenberg model.

A lattice of localized classical spins is defined by unit vectors  e
→

i , where i denotes lattice (or

atomic)  sites,  in  the  classical  Heisenberg  model.  The  spin-spin  interactions  are  represented  by
isotropic exchange parameters J ij , which inserted in the spin Hamiltonian.[2]

H=−
1
2∑i≠ j

J ij e⃑ i e⃑ j

The magnetic force theorem allows us to extract the exchange parameter J ij  from the effective

single-particle Hamiltonian  Ĥ  resulting from a self consistant calculations. We write  Ĥ  in
terms of a basis set of localized orbitals centered at lattice locations, using a collinear-spin reference
frame.  As  a  result,  in  the  spin  indices,  the  Hamiltonian  is  diagonal.  The  corresponding  spin-
dependent and site-indexed Hamiltonian blocks are indicated by H ij

σ  for all the base functions

assigned to one site and, the same basis functions are taken into account for the two spin-channels.
Then it is possible to derive the exchange parameters from the expression.

J ij=
2
π ∫

−∞

ϵF

d ϵTr L[H ii
s ~
Gij

↑
(ϵ)H jj

s ~
G ji

↑
(ϵ)]

where ϵF  is the Fermi energy, TrL  denotes the trace of matrices in orbital space, with H ii
s is

the local, part of the  Hamiltonian that corresponds to the exchange splitting.



H ii
s
=

(H ii
↑
−H ii

↓
)

2

and the Green's function

~
Gij

σ
=[(zS−H )

−1
]ij
σ

Description of research work carried out in the current semester:

This semester, My work this semester was based on three points.

1) became acquainted with the numerical procedure to obtain the  J ij  Heisenberg interactions

(exchange energy).

During this phase I studied how to find a way for first-principle calculations of J ij , and it was a

good choice to use the Green’s function formalism to obtain the exchange energy. Then applying
this to the tools I have ( the code in hand), running through the it and matching it with the system in
hand. 

2) Calculate ABC graphene DFT, and Hubbard Hamiltonian J ij

I ran the the code for different ABC graphene configuration. I tried it for 3,5,8,15 layers. All runs
were performed using the computer cluster made available by KIFÜ. 

3) Complete the code with J ij from mean-field solution of the Hubbard model for carbon ribbons,

but the calculations are still in progress.

The Hubbard Hamiltonian obtained from were used with the same algorithm for calculating the
J ij . This work is still in progress, and we hope to publish our findings as soon as possible. We

are currently finalizing the work that will be published.

Studies in current semester:

1. solid state theory (FIZ/1/022E)

In the field of condensed materials I got to know about the newest findings and research. The main
focus  was  on  Molecular  dynamics,  empirical  potentials,  many particle  potential,  first  principle
methods,  Phase  field  theories,  Continuum  theory  of  defects.  Those  which  have  extended  my
theoretical skills. 

2. Many body problems (FIZ/KUT-S4)

The purpose of this lecture is to introduce many body descriptions to the field-theoretical formalism
based on perturbative expansion through Feynman's diagrams.



Workshops and seminars during my studies:

-  2020  Joint  Conference  of  the  Condensed  Matter  Divisions  of  EPS  (CMD)  and  RSEF
(GEFES) ,CMD2020GEFES, which held Madrid spain between 31 AUG -4 SEP, 2020. during this
workshop I attended number of lectures, including: 

1. Modern trends in topological quantum matter.

2. Quantum thermoelectrics and heat currents at the nanoscale each of these talks were held 
by multiple talker, where they talked about their work in this subject field

- 4th Graphene and 2D Hetero structure Workshop, which held at BME between 24-25. OCTOBER,
2019. during this workshop I attended number of lectures, including:

1.  Theory  of  induced  spin-orbit  coupling  and  its  twist-angle  dependence  in  
graphenetransition metal dichalcogenide heterostructures, by Andor Kormányos.

2. Spin-orbit induced phase shift in Josephson junctions, by Assouline Alexandre

3. Simulating transport through mono- and bilayer graphene nanoconstrictions, by Thomas 
Fabian

Seminar  under  the  title:  accurate  numerical  calculations  for  strongly  correlated  ultracold  few-
fermion systems with the trans correlated approach. This seminar was held at BME, and given by
Peter Jeszenszki, on 2019. 10. 07
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