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1 Introduction

Confinement and chiral symmetry breaking are the two most striking features
of low-energy hadronic physics. Although in principle unrelated, these two phe-
nomena turn out to be closely connected: in fact, at the finite temperature tran-
sition of QCD both its confining and chiral properties change dramatically. The
nature of the connection between confinement and chiral symmetry breaking
is, however, not fully understood yet. In this respect, an interesting line of inves-
tigation is the study of the localisation properties of the low-lying eigenmodes of
the Dirac operator. As a matter of fact, these properties change radically at the
finite-temperature transition, with the low modes turning from delocalised to
localised as the theory deconfines and chiral symmetry gets effectively restored
in the high temperature phase. The same close relationship between decon-
finement, approximate chiral symmetry restoration and localisation of the low
Dirac modes is found also in other gauge theories. This suggests that the study
of localisation in gauge theory can provide clues about the nature and mecha-
nisms of the finite-temperature transition and the relation between confining
and chiral properties. The nonperturbative nature of these phenomena makes
the lattice approach the most suitable tool for their study.

An intuitive explanation of low-mode localisation is the so-called “sea/islands„
picture [1]. According to this picture, in the deconfined phase of gauge the-
ory the “islands„ of Polyakov loop fluctuations in the “sea„ of ordered Polyakov
loops act effectively as “potential wells„ favouring localisation of low Dirac modes.
This picture is quite general, and has been verified in several models [2], where
correlation between localised modes and Polyakov-loop fluctuations has been
observed.
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2 Result of previous semesters

To study localisation, the simplest quantity one can look at is the Participation
Ratio (PR),

PR =
(∑

n
|ψ(n)|4

)−1
V −1, (1)

averaged over configurations and over modes ψ in a given spectral region. This
quantity expresses how extended modes are in the spectral region of interest.
When the modes are delocalised, their PR goes to a constant value for large vol-
umes, meaning that the modes occupy the whole lattice. If the modes are lo-
calised in a finite region then their PR goes to zero in the infinite volume limit.
Equivalently, one can use the mode size, defined as the PR times the lattice size,
which diverges as V for delocalised modes and goes to a constant for localised
modes. In general, for a mode size scaling like V α one can say that modes have
fractal dimension α.

The first model I studied by numerical simulations was the Z2 gauge model
in 2+1 dimensions [3]. Above the deconfinement transition and in the positive
Polyakov-loop sector, I found localised modes for the staggered Dirac operator
up to a certain point in the spectrum, called “mobility edge„.

The next model I studied was Z3 gauge theory in 2+1 dimensions. This
model is interesting because the ”deepest„ potential wells are the shallowest
among ZN gauge models in the trivial Polyakov-loop sector, so making local-
isation harder; and because in the complex Polyakov-loop sectors the islands
of fluctuations do not provide potential wells at all, thus making the simplest
sea/islands picture unable to predict (and, if it is the case, explain) the localisa-
tion of low modes.

As a preliminary task, I had to determine the deconfinement temperature
of the model, as it was not available in the literature. This is most efficiently
done by exploiting the duality with the 3-state Potts model, for which one can
employ a cluster algorithm to avoid critical slowing down near the transition. I
determined the critical coupling for lattices of temporal size Nt = 4 by studying
the Binder cumulant, B, for different spatial sizes. This quantity is volume in-
dependent at the critical point, which is then found by looking for the crossing
point of curves B(β) for different lattice sizes. The result of this study is shown
in Fig. 1. From this one can obtain the critical coupling for the Z3 gauge theory
via the duality relation and get βc = 1.067(1).
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Figure 1: The Binder cumulant computed in the 3-states Potts model.

3 Results in the current semester

After determining the critical temperature, I started full simulation runs in both
phases ofZ3 gauge theory for different lattice sizes and temperatures. Below the
transition I did not find localisation for low modes (Fig. 2), that have a fractal
dimension around 1. For bulk modes the fractal dimension goes closer to 2,
meaning that their size scales approximately like the volume. At the high end of
the spectrum the fractal dimension drops to zero, meaning that high modes are
localised. However, in the deconfined phase in the real Polyakov-loop sector, for
low modes the fractal dimension is around zero, showing that these modes are
localised; this is the case for high modes as well. The bulk modes are delocalised
in the deconfined phase, too. I also confirmed the validity of the sea/islands
picture, showing that localised modes correlate with Polyakov-loop fluctuations
away from the ordered value.

In the deconfined phase in the complex sector, for low modes the fractal di-
mension is around zero, showing that these modes are localised (Fig. 4); this is
the case for high modes as well, while the bulk modes are delocalised also here.
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Figure 2: The fractal dimension along the spectrum-confined phase.
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Figure 3: The fractal dimension along the spectrum-deconfined phase, real sec-
tor.

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

α

λ

β = 1.08

Ns = 20, 24
Ns = 24, 28
Ns = 28, 32

Figure 4: The fractal dimension along the spectrum-deconfined phase, complex
sector.
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4 Courses

In the semester I attended Advanced field theory.

5 Publications

Localisation properties of eigenmodes of the staggered operator in Z2 gauge
theory (arXiv: 2104.03779), was published in Physical Review D (Phys. Rev. D
104, 054513, 2021).

Deconfinement transition and localization of Dirac modes in finite-temperature
Z3 gauge theory on the lattice, writing is in progress.

6 Conferences

In 2021 on July 26-30 I took part in the International Symposium on Lattice Field
Theory, where I gave a talk about localisation in Z2 gauge theory. The proceed-
ing of this talk can be found at arXiv: 2110.15293.

7 Teaching activity

In the current semester I taught Elektromágnesség to BSc students (1 hour per
week).
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