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1) Introduction and Description of research work carried out: 
 
Historically, in 1837 the British Association for the Advancement of Science appointed John 
Scott Russell and Sir John Robison to a “Committee on Waves” charged with conducting 
laboratory experiments to investigate water-wave phenomena [1, 2]. They published a 
substantial report in which surface waves were classified into four types: solitary, oscillatory 
(periodic wave trains), capillary (due to surface tension effects), and corpuscular (compressive 
sound waves propagating through water). After their experimental study, various 
mathematicians and physicists investigated the topic. In later years, Boussinesq, Rayleigh, and 
McCowan came up with theories to describe solitary waves on an inviscid and incompressible 
fluid. In particular, Boussinesq [2] showed in 1871 that suitable approximations to the governing 
equations lead, for sufficiently small amplitudes, to solitary wave solutions of the type described 
by Scott Russell in [1]. By balancing nonlinearity and dispersion, Korteweg and de Vries [3] 
derived using a systematic approximation procedure applied to the governing equations for 
water waves a simple nonlinear model equation for long waves that admits solitary-wave 
solutions. The KdV theory is a first-order approximation that adequately explains the wave 
properties observed by Scott Russell. Since the 1950s, the KdV equation and other equations 
that admit solitary wave solutions have been the subject of intense studies. Also, numerous 
experiments investigating head-on solitary wave, their behavior, and collisions of solitary waves 
were carried out [1, 2, 4]. 

This report covers studies on the dissipation relation in the presence of viscosity and the 
approximation Navier-Stokes (NS) equations by finding Taylor coefficients of a velocity field. In 
this way, we can construct a velocity model that is polynomial in terms of the distance from the 
point of expansion. 
 

I) Damping of surface waves on finite depth viscous fluids  
To describe the nonlinear wave phenomenon remarkably in the ocean, various evolution 
equations have been proposed and studied. In shallow water, the Boussinesq equations for 
two-dimensional waves, the Korteweg-de Vries (KdV) equation for uni-directional waves, the 
Kadomtsev-Petviashvili (KP) equation for weakly two-dimensional waves and their solitary 
wave solutions are very well-known and of interests to all disciplines [5]. Many studies have 
attempted to assess the significance of dissipation. The viscous effects are a problematic 



situation as there is always a degree of ambiguity surrounding the concept of dissipation. The 
effect of viscosity on free oscillatory waves on deep water was studied by Boussinesq and 
Lamb, among others. Basset also worked on viscous damping of water waves [5, 6].  
The consciousness of the effect of viscous dissipation is required in the assessment of the 
various process of wave generation [7]. Followed by previous studies we consider linear surface 
waves on a viscous, incompressible fluid of finite depth h . The coordinates 𝑥 and 𝑦 are 
horizontal, 𝑧 is vertical. The origin lies at the undisturbed fluid surface. Suppose that the flow 
corresponding to the surface wave does not depend on 𝑦. We start with the Ansatz 
  
      , , i kx tu x z t f z e    (1) 
  
      , , i kx tw x z t ik f z e     (2) 
for the non-vanishing velocity components. Note that 𝜔 is in general complex, its imaginary part 
describing the damping and the Ansatz automatically satisfies the incompressibility condition. 
The linearized Navier-Stokes equation may be written as 
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Which leads to a differential equation for  f z   

 2 2 22 0f i k f i k k f 
 

           
   

  (5) 

 
The Eq (5) has exponential solutions  expf z . For the exponent , we get 
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The solutions are  
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For brevity, we shall use the notation  for 3 4    and k  for 1 2   . The general solution 
f  may be given as 
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Where 1 2 1, ,a a b  and 2b  are integration constants and h  stands for the fluid depth. Then the 
boundary conditions at the bottom, 
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Which is expressed in terms of the new constants A  and B . Hence for f  we get 
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Upon integrating the x component of the Navier-Stokes equation with respect to x  , we get the 
pressure as 
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Where kx t   . At the fluid surface we have the boundary conditions that the strain forces 
are continuous, therefore (in linear approximation) we have 
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for the shear and 
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for the pressure. Eq (16) implies 
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While the Eq (17) implies 
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Note that here  ,z x t  stands for the deviation of the fluid surface from equilibrium. We 
have at the surface (again in linear approximation) 
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Note that on the right-hand side, we may set 0z  . Putting here the expression of zv  (i,e., Eq 
(2) ) and that of  from Eq (19), we have 
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Alternatively, in terms of   
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Here again 0z  . Inserting now the solution(14) into Eqs (18) and (22)  we obtain a linear 
homogeneous system of equation for the coefficients A  and B . Furthermore, the vanishing of 
the determinant of this system (which is the condition for the existence of a nontrivial solution) 
may be expressed in terms of the dimensionless variables  
 K kh   (23) 
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Now by introducing , one can rewrite (26) in terms of Q
K
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So 
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Note that ifQ  is a solution of the Eq (28), so is Q . On the other hand, this sign does not 
matter when calculating . Henceforth we assume that the real part ofQ  is positive, and thus

tanh 1Q   when | |Q  . We can also rewrite Q  in terms of K ,  and S
gk


 . 

  2 2 2 22K S i Q K    (29) 
It is clear that in liquids of vanishing viscosity, as 0  , S  and K  assume their inviscid 
significance and remain finite. Consequently, from (29), as 0   thenQ  . Therefore, in the 
leading order Eq(28) reduces to 
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Here the negative sign has been chosen in order to get positive real part of angular frequency 
via Eq (29). Further, according to the convention mentioned above, we have 



 
Figure 1. The dispersion relation for gravity waves propagating at the interface of air and water in the presence 
of kinematic viscosity. Numerical solution of the Eq (34). The blue and the red lines show  Re   and  Im   

respectively. 
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Our results fully agree with the deep-water solutions, and particularly they lead to Zakharov’s 
dispersion relation for small viscosity. The most significant benefit of (30) is that one can 
compute appropriate relation for finite depth and study shallow water  0K  . In the limit of 
infinite depth, the dispersion relation can be shown to be the solution  k of the following 
equation 

 
12
2

2 2 3 22 4 1gi i
k v k k
 
 

         
   

  (34) 

The physical solution is shown in Figure 1. for a wave propagating in the presence of 
261 10 m

s   .  Furthermore, we seek a solution to the Eq (30) of the form 
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By substituting (35) into (30) and equating coefficients of powers of   lead to the iq   
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Where  24sinhY K .  
According to the Eq (29), one can also express  in terms of the powers of   
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To next order,  
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The last term in the bracket is higher order (significantly smaller) than the middle one, yet it 
must be kept because in case of deep fluid ( 1K  ) the middle term 4

0 tanhpQ K K  is just 
canceled by the term 2K  (second term in the Eq (45) ). 
Eq (45) yields  
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To this order, we have for the angular frequency 

 

2 20
2

2 2
2

tanh( ) 2
sinh(2 )

2 tanh( ) 2 tanh( )
tanh( ) 2

2sinh(2 ) 2sinh(2 )

QK K i k i k
h p K K

k gk kh k gk kh
gk kh i k

kh kh

  

 


  

   
      
   
   

  (47) 

The first term of the real part is the well-known dispersion relation of surface waves in ideal 
fluids [5]. As for damping, the leading term is the first one in the second bracket, proportional 
to  , except in deep fluid. In deep fluid ( kh  ), this term vanishes. So one gets the well 
know damping exponent 22 k . 
 

II) No waves exist in shallow fluid layers 
a. Gravity waves 

 
Viscosity not only damps waves, but it can even prevent their propagation. This conclusion may 
be drawn from the Eq (28). In order to get a propagating wave with wave number K  it is 
necessary and sufficient that Q  has both a real and an imaginary part (see Eq (29) ). By 
studying numerically the solution of the Eq(28) , we concluded that it is possible in the 
parameter domain under the curve shown in Fig. 2. 
As such it can be concluded that no gravity waves can propagate if 0.085p  1. Even if 0.085p 
, neither very long nor very short waves can propagate. 
 
                                                            
1 In case of water this translates to 0.1h mm . for glycerin to 7.7h mm . 



 
Figure 2. The maximal parameter p  versus the scaled wave number x K .  

For parameters below the curve wave propagation is possible. 
 
 

b. Capillary waves 
 
Indeed, in such shallow fluid layers surface tension may not be negligible. If we take surface 
tension into account, we get instead of Eq (28) 
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Where 

 2s
gh



   (49) 

The solution of the Eq (48)  yields a similar curve than Fig 2. If one plots the maxima of these 
curves versus s  , one obtains Fig 3. As shown in Fig. 4, the curve starts almost like a constant. 
For large s values, we have a linear dependence, namely 0.384p s  . This implies that wave 
propagation is not possible if 
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The Eq (50) gives the limit for water 83.56 10h m  . As for glycerin, its parameters correspond 
to the beginning of the curve (Fig. 4) at 0.086s   so here, the limit obtained for gravity waves is 
not significantly changed. 
In summary, we predict that no waves can propagate in a thin liquid layer. This result may be 
checked in case of glycerin, where this critical layer thickness is 7.7 mm . 
 

III) Fully Non-linear Viscous equations 
 
We have aimed to apply a strategy similar to that applicable in case of ideal fluids to derive the 
KdV equation. Indeed, if it is sufficient to consider the first few terms of the Taylor expansion in 
terms of the vertical coordinate z , one may derive evolution equations for them from the NS 
equations. However, it turned out that this strategy was not applicable since it never happens 
that both K  and  Q  are small, which would be a prerequisite. Indeed, if the modulus Q  is 
plotted on the parameter plane, we get Fig. 5.  



 
Figure 3. The maximal parameter p versus the scaled surface tension s. For parameters below the curve wave propagation is 

possible. 

 

 
Figure 4. The maximal parameter p versus the scaled surface tension s. For parameters below the curve wave propagation is 

possible. 

 

 
Figure 5. Level heights of modulus of Q in case of zero surface tension. 

 



 
Figure 6. Modulus of Q along the critical curve (notations: x=K, y=Q). 

 
 
One can see that there is a ridge in the middle of the picture (roughly vertically). It is now a 
question of how it behaves near the lower left corner. To this end, we plotted the modulus of Q  
along the critical ( )p K  curve. The result is shown in Fig 6. This plot illustrates that where K  is 
small, Q remains finite (larger than1.5 ). Hence, the handling of nonlinear corrections needs 
another approach. 
 

a. Taylor Expansion 
 
It is also clear that the viscous terms can be added in the nonlinear equations. Here, we derive 
a set of nonlinear coupled partial differential equations that describe the surface wave as well 
as Taylor coefficients of velocity field [8].  
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Applying the boundary conditions, we will find the following equations 
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Where  ,x t   denotes the surface wave. 
 
 

IV) Simulations 
Simulation is another part of the research in which wave generation and wave dynamics will be 
studied. In order to simulate the problem, OpenFOAM software is used.  
OpenFOAM is free, offering users the freedom to run, copy, distribute, study, change, and 
improve the software. Although many engineers handle computations on several commercial 
software, technologically OpenFoam is equivalent to commercial software. It is also able to 
create individualized solutions and offers an excellent scope of custom development. On the 
other hand, OpenFOAM is gaining considerable popularity in academic research and among 
industrial users, both as a research platform and a black-box CFD and structural analysis 
solver. The main ingredients of its design are 

 Expressive and versatile syntax, allowing easy implementation of the complex physical 
model 

 Extensive capabilities, including wealth of physical modeling, accurate and robust 
discretization, and sophisticated geometry handling, to the level present in commercial 
CFD 

 Open architecture and open source development, where the complete source code is 
available to all users for customization and extension at no cost 

 
In this step, the issue is the mechanism of generating solitary waves. To this end, there are 
different scenarios to generate solitary waves and make (un)even bottom. To tackle this 
problem, we finally install OlaFlow library. Fig 7 illustrates the simple boxes designed in 
OpenFoam. We also generate solitary waves and test their motion both in the same direction 
and in the opposite direction. Generation of two solitary waves and their interaction is now 
available in OlaFlow library as a simple example of this library. 
 
 
 



 
 

Figure 7. Simple uneven bottom structure. 
 
 
 
 
 
 

      
 

Figure 8. Interaction of two solitary waves that move in the opposite direction 
 



 

 
Figure 9. Interaction of two solitary waves in the opposite direction 

 
 
 
 
 
 
 
 
 
 



2) Studies at ELTE 
In the previous four semesters, I passed 120 credits. There are different topics related to my 
project was taken. In the first year, the main courses were “Solitons and Instantons” and “non-
equilibrium statistical physics.” Participating in these courses, I have the opportunity to observe 
a wide variety of study methods in my research area. Besides, other courses allowed me to 
improve my abilities in programming. Python programming, data mining, and data visualization 
techniques were introduced in these courses. Doing projects is the second key factor that 
should be considered. They cover state-of-the-art physics and computational methods, 
particularly in Oceanography, Data Science, and Network Science. 
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