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Personal circumstances:  
In this semester, I continue my studies by taking courses entitled “Solitons and Instantons 
II”, “Data mining and machine learning” and “Data Science computer lab” as well as 
guided research under the supervision of Dr. Bene. Participating in these courses, I have 
the opportunity to observe a wide variety of study methods in my research area. 
Particularly, in the “Solitons and Instantons II,” I learned more about solitons and their 
application in a wide range of physics. In addition, I acquired skill in mathematical 
techniques. The other courses gave me the opportunity to improve my abilities on 
programming. Python programming and data mining techniques were introduced in these 
courses. Doing projects is the second key factor that should be considered. They cover 
state-of-the-art physics, particularly in Oceanography and Network Science. 
 
Description of research work carried out in current semester: 
To describe the nonlinear wave phenomenon remarkably in the ocean, various evolution 
equations have been proposed and studied. In shallow water, the Boussinesq equations 
for two-dimensional waves, the Korteweg-de Vries (KdV) equation for uni-directional 
waves, the Kadomtsev-Petviashvili (KP) equation for weakly two-dimensional waves and 
their solitary wave solutions are very well-known and of interests to all disciplines [1]. 
Many studies have attempted to assess the significance of dissipation. The viscous 
effects are a problematic situation as there is always a degree of ambiguity surrounding 
the concept of dissipation. The effect of viscosity on free oscillatory waves on deep water 
was studied by Boussinesq and Lamb, among others. Basset also worked on viscous 
damping of water waves [1, 2]. 
The consciousness of the effect of viscous dissipation is required in the assessment of 
the various process of wave generation [3]. Followed by previous studies we consider 
linear surface waves on a viscous, incompressible fluid of finite depth h . The coordinates 𝑥 and 𝑦 are horizontal, 𝑧 is vertical. The origin lies at the undisturbed fluid surface. 
Suppose that the flow corresponding to the surface wave does not depend on 𝑦. We start 
with the Ansatz 
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for the non-vanishing velocity components. Note that 𝜔 is in general complex, its 
imaginary part describing the damping and the Ansatz automatically satisfies the 
incompressibility condition. 
The linearized Navier-Stokes equation may be written as 
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Which leads to a differential equation for  f z   
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The general solution for 𝑓 is 
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   . The linearized boundary conditions at the surface are 

  ,0,w x t
t




  (7) 

 0 0u w at z
z x

        
  (8) 

 2 0o
wp p at z
z

 
  


  (9) 

The free surface  ,z x t  must be found as part of solution. By defining the following 
variables 
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we can rewrite Q  in terms of K , and S
gk


 . 
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It is clear that in liquids of vanishing viscosity, as 0  , S  and K  assume their inviscid 
significance and remain finite. Consequently, from (12), as 0   thenQ  . Therefore, 
the kinematic boundary condition (7) accompanied with dynamic boundary conditions (8) 
and (9), at small viscosity limit, provide the dispersion relation 
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Our results fully agree with deep water solutions and particularly they absolutely lead to 
Zakharov’s dispersion relation for small viscosity. The most significant benefit of (13) is 
that one can compute appropriate relation for finite depth and study shallow water  0K   
In conclusion, this approach satisfies deep water limit and lets us study finite depth cases. 
The next step is to consider nonlinearity of the Navier-Stokes equation to next to the 
leading order. This would generalize the KdV equation for the viscous case. Furthermore, 
we would seek and compare theoretical results with OpenFoam which was designed last 
semester. 
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