4. félévi beszámoló 2018.05.30.
Timár Anikó (t.aniko@outlook.com)
Fizika Doktori Iskola, Csillagászat és Részecskefizika Program
Témavezető: Németh Zoltán, Lichtenberger János
A dolgozat címe: Napszél eredetű hatások egy üstökös körül – vizsgálatok a Rosetta űrszonda mérései alapján

Bevezetés

Az előző félévben már megbecsültem a 67P/Csurjumov-Geraszimenko üstökös körüli napszélnyomást a Rosetta által mért mágneses tér mérésekből maximumkeresési eljárással, ebben a félévben pedig a korábban már használt Cravens-modell alapján is kiszámítottam. Ehhez fontos volt megvizsgálni, hogy alkalmazhatóak-e a Giotto űrszonda Halley üstökös kómájában történt végighaladása után felállított elméletek, mint az ion-semleges súrlódás, egy sokkal kisebb aktivitású üstökös esetében is, mint amilyen a 67P. Az alkalmazhatóságot részben már bizonyítja, hogy az előző félévek során bemutatott, ion-semleges súrlódáson alapuló modell segítségével kiszámolt diamágneses üreghatár távolság jól illeszkedik a Rosetta által kimért üregáthaladásokhoz (2015 júniusától 2016 februárjáig); azonban ennek miértje nem volt teljesen tisztázott.

Előző három félévben elért kutatási eredmények összegzése

A diamágneses üreg az üstökös kómájának legbelső régiója, ahonnét az üstökösből kiáramló plazma "kifújja" az interplanetáris mágneses teret, létrehozva egy mágneses tér nélküli területet az üstökös körül. A munkám során többek között azzal foglalkoztam, hogy hogyan lehetne meghatározni a diamágneses üreg kiterjedését a 67P üstökös környezetében, amihez különböző adatsorok és módszerek segítségét vettem igénybe. Végül a különböző módokon kiszámolt határtávolságokat összevetettem a Rosetta űreszköz által mért többszáz, néhány perces diamágneses üregáthaladás helyzetével.

Cravens (1986) modellje szerint a diamágneses üreg külső határán a mágneses nyomás egyensúlyt tart az üstökös felől érkező ionoknak a semleges atomokon történő "súrlódásából" fakadó erővel. A határtávolság (r_{cs}) ekkor az $r_{cs} = c \frac{Q^{3/4}}{B_0}$ összefüggés alapján számítható, ahol c konstans (c = 7.08 × 10⁻¹⁸ km·nT·s^{3/4}), Q [1/s] az üstökös gáztermelési rátája, B₀ [nT] az üreghatár előtt feltorlódott mágneses tér maximális értéke. A határtávolság kiszámításához így szükség van gáztermelési ráta mérésekre és a B₀ maximum meghatározására. Utóbbi meghatározható a Rosetta mágneses tér méréseiből, valamint az üstökös helyzetéhez extrapolált napszélnyomásadatok segítségével is.

Gáztermelési ráta esetében a Rosetta űrszonda Rosina műszerének lokális méréseit, valamint a lokális mérésekből származtatott globális gáztermelési rátát használtam fel. Lokális gáztermelési rátával számolva az üreghatár távolságát arra az eredményre jutottam, hogy a modellezett határtávolság alig kerül átfedésbe a megtalált üregáthaladásokkal. Globális gáztermelési rátát használva azonban az eredmény már jól illeszkedik a korábban talált üregáthaladásokhoz. Ennek alapján azt feltételezzük, hogy a változásokat a lokális gáztermelési rátában elnyomja a mágneses erővonalak görbületi feszítő ereje az üreghatáron, ezért az üreghatár kis, lokális nyomás-fluktuációk hatására nem képes kifele mozogni. Így a továbbiakban a határtávolság kiszámításához a globális gáztermelési rátát használom. A mágneses tér maximális értékét (B_0) egyrészt lokális maximumkereséssel becsültem meg a Rosetta mágneses tér méréseiből. A módszer csupán egy közelítő becslést ad B_0 pillanatnyi értékére, azonban a kiszámolt határtávolság ebben az esetben szinte tökéletesen illeszkedik a korábban talált üregáthaladások helyzetéhez (2015 júniusa után), sőt, segítségével további, eddig ismeretlen üregáthaladásokat is fel tudtam fedezni (1. ábra).

A B₀ maximumot a $B_0 = \sqrt{p_{sw}\mu_0}$ összefüggés segítségével is megbecsültem, ahol p_{sw} a napszél dinamikus nyomása. A napszél dinamikus nyomását az üstökös pozíciójához extrapolált WIND, ACE és OMNI napszélnyomás adatsorokkal közelítettem. A három adatsor alkalmazásával kiszámolt határtávolságok egymáshoz hasonló eredményt adnak, azonban összességében pontatlanabbul illeszkednek a talált üregáthaladásokra, mint a Rosetta mágneses tér adatokkal számolt határtávolság. Ebben az esetben a Nap felszíni aktivitása befolyásolta előnytelenül az adatsorokat, mely hiba a mérőszondák és az üstökös interplanetáris térbeli helyzetkülönbségéből adódik.

1. ábra: A diamágneses üreghatár távolsága az üstököstől lokális maximumkereséssel, a globális gáztermelési rátával számolva. A fekete vonal a Rosetta útvonala, a piros keresztek az üregáthaladások helyzetét jelölik. A zöld körök olyan új üregáthaladási eseményeket jelölnek, amelyeket a maximumkeresési eljárás segítségével találtam meg.

A határtávolságot egy harmadik eljárással is meghatároztam, az úgynevezett Cravensmodellel, amely azon alapul, hogy a Rosetta által mért mágneses tér értéke (B(r)) függ a szonda és az üstökös távolságától (r). A Cravens-modell a következőképpen írja fel a kapcsolatot B(r), r és B₀ között:

$$B(r) = B_0 \sqrt{1 - \frac{r_{cs}^2}{r^2}}$$

Az egyenletből B₀-t kifejezve és visszahelyettesítve a korábban már ismertetett összefüggésbe, amely szerint $r_{cs} = c \frac{Q^{3/4}}{B_0}$, a határtávolság kiszámolható:

$$r_{cs} = \left(\frac{B(r)^2}{c^2 Q^{3/2}} + \frac{1}{r^2}\right)^{-\frac{1}{2}}$$

Ez a módszer csak az üregen kívül használható, azaz B(r)>0 esetén, azonban eredményként az egzakt határtávolságot adja vissza. A Cravens-modellből és a maximumkeresési eljárásból származó megoldást ábrázoltam és összehasonlítottam egymással. Ez alapján elmondható, hogy a két módszer egyrészt jól illeszkedik a talált üregáthaladásokhoz, másrészt egymáshoz is pontosan illeszkednek azokon a területeken, ahol a szonda a diamágneses üregen kívül tartózkodott, ami validálja a maximumkeresési módszert.

Az eredmények arra mutatnak, hogy a felgyülemlett napszél mágneses terének hirtelen, gyors változásai alakítják ki a szonda által észlelt rövid, szakadozó üregáthaladásokat, egy valószínűleg globális üreg határán. Ezzel szemben 2015 júniusa előtt a kiszámolt határtávolság egyik módszer esetében sem illeszkedik a talált üregáthaladásokhoz, ami arra utalhat, hogy ebben a korai időszakban valamilyen más, eddig ismeretlen folyamat alakította ki az eseményeket.

A fenti eredményekből Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov–Gerasimenko címen jelent meg a cikkem a Monthly Notices of the Royal Astronomical Society folyóiratban.

Az üstökös felől érkező, diamágneses üregben haladó ionizált részecskék az üreghatáron a mágneses térbe érkezve csapdázódnak a tér mentén, pillanatnyilag lelassulnak, ezzel sűrűségük is megemelkedik. Ez jól látszik a Rosetta által mért elektronsűrűség adatokon; általában az üregen belüli értékekhez képest 2-3-szoros megugrás látszik az elektronsűrűségben az üreghatáron. Az elmúlt félévekben az elektronok sűrűségugrásával korreláló növekedést találtam a mért semleges sűrűség adatsorában is, ahol a semleges sűrűség az üregen belüli értékekhez képest 10-20%-kal növekedett meg az üreghatáron. A magyarázatunk szerint az üreghatáron felsűrűsödött plazma visszahat a mágneses téren különben akadálytalanul átjutó semleges részecskékre, az ionok és a semleges atomok ütköznek egymással, miáltal a semleges részecskék momentumot veszíthetnek, s feltorlódhatnak. Tehát az ion-semleges súrlódásban a plazma visszahat a semleges összetevőre, a hatás pedig ott lesz a legjelentősebb, ahol az ionizált és a semleges részecskék közti sebességkülönbség a legnagyobb; az üreghatáron. A jelenség további vizsgálatát pontos sebességadatok tennék lehetővé.

Az előző félévben elkezdtem azon dolgozni, hogy hogyan lehet a Rosetta által mélyen az üstökös indukált magnetoszférájában végzett mágneses tér mérésekből következtetni az üstököst körülvevő dinamikus napszélnyomásra. A korábban ismertetett $B_0 = \sqrt{p_{sw}\mu_0}$ összefüggés alapján a B₀ maximum meghatározásával az üstökös körüli napszélnyomás kiszámítható. Ezt a korábbi félévekben a maximumkeresési eljárás segítségével tettem meg, majd az eredményeket földközelből extrapolált napszélnyomásadatokkal összehasonlítva jó egyezést kaptam.

Aktuális félévben elvégzett kutatás

Az ion-semleges súrlódás mértékét az ionsűrűségek, valamint az ionizált és semleges részecskék egymáshoz viszonyított sebessége befolyásolja. Az utóbbi paraméter tulajdonságait már ismertettem; a semleges áramlás és az ionizált részecskék sebességének különbsége a diamágneses üreghatáron a legnagyobb, ezért az ion-semleges súrlódásnak itt lehet a legerősebb hatása.

Az ionsűrűségeket fotokémiai és transzportfolyamatok határozzák meg. A kémiai élettartamot a Nap UV sugárzása és ütközések miatt a semleges részecskeáramláson bekövetkező ionizációs, valamint rekombinációs folyamatok gyakorisága határozza meg, a transzportfolyamatok jelentőségét pedig a részecskék sebessége, valamint az üstökösmagtó való távolság. Az ionok fotokémiailag kontrolláltak, ha a kémiai élettartamuk rövidebb, mint a kómabeli transzportfolyamatok időskálája; a transzport dominál, ha az időskálák között fordított összefüggés áll fenn. A Halley üstökös esetében az üstököstől kb. 1000 km-es távolságban (a Halley üstökös diamágneses üregén belül), 10⁷ cm⁻³-es semleges sűrűség mellett az ionok kémiai élettartama ~10 s, míg 1 km/s-os semleges sebességekkel számolva a transzport időtartama nagyjából 1000 s. Így nyilvánvaló, hogy ekkora távolságokban fotokémiai egyensúly feltételezhető, az ionok mennyiségét az ionizációs és rekombinációs folyamatok fogják meghatározni, a transzportfolyamatok pedig a háttérbe szorulnak. Cravens (1987) mind tisztán fotokémiai megfontolások esetében, mind kizárólag transzportot feltételezve azt az eredményt kapta, hogy az ionsűrűségek az üstököstávolsággal éppen fordítottan arányosan ($n_{ion} \sim 1/r$) csengenek le.

A Csurjumov-Geraszimenkónál a fentiekhez hasonló semleges sűrűségek és hozzájuk kapcsolódó kémiai élettartamok az üstökös kisebb aktivitása miatt a maghoz közelebb találhatók meg, kb. 200-300 km-es távolságban (körülbelül a 67P diamágneses üregének határán). Itt a transzportfolyamatok időskálája kisebb, továbbra is átlagosan 1 km/s-os semleges sebességgel számolva 200-300 s. Ez alapján a 67P környezetében még mindig fotokémiai folyamatok dominálnak, bár a transzport jelentősebbé válik, mint a Halley esetében. Ezzel összhangban, a Rosetta mérései azt mutatják, hogy az ionsűrűségek körülbelül 1/r-es függése ugyanúgy fennáll a 67P-nél (Edberg et al., 2016), mint a Halley üstökös esetében.

Tehát az ionsűrűség mind a két üstökös esetében 1/r-es függést mutat, a sűrűségeket leíró függvények egymástól legfeljebb egy konstans erejéig térnek el. Érdemes megjegyezni, hogy a diamágneses üreg határán a semleges sűrűségek is hasonló értékeket vesznek fel a két üstökös esetében ($n_n \approx 5 \cdot 10^6 - 10^7$ cm⁻³). Ezek alapján mindkét üstökös esetében az ion-semleges súrlódás a domináns kölcsönhatás. Pontos számszerű értéke egy egységnyi nagyságrendű konstanssal eltérhet a különböző üstökösaktivitás miatt; így a Cravens-modell a Rosetta által mért ionsűrűségekkel számolva alkalmazható a 67P üstökös esetében is.

Mint a korábbi félévekben ismertettem, a Rosetta űrszonda mélyen a Csurjumov-Geraszimenko üstökös indukált magnetoszférájában helyezkedett el a misszió idejének jelentős részében, emiatt a Rosetta pozíciójában nincs lehetőség a napszél dinamikus nyomásának mérésére. Így a kutatók nem tudják a napszélnyomásfüggő méréseket és eredményeket korrelálni a pontos napszélnyomás adatokkal, csupán a földközeli szondák extrapolált méréseivel, amik, figyelembe véve a Föld és a 67P nagy távolságát, valamint a Nap heves aktivitását 2014-2016 között, jelentős hibával terheltek.

A fentiek fényében most a maximumkeresési eljáráson kívül a Cravens-modell alapján is megbecsültem a napszél dinamikus nyomását az üstökös körül, 2015 májusától 2016 februárjáig. A két eredményt először is egymással, valamint földközelből különböző eljárásokkal az üstökös helyzetéhez extrapolált dinamikus napszélnyomás adatokkal vetettem össze. A Rosetta mágneses tér mérésekből származtatott napszélnyomás koronakidobódások esetében jelentősen eltér a földközelből extrapolált adatoktól; itt vagy egyedül a földközeli mérésekben, vagy kizárólag a Rosetta méréseiben jelentkeznek koronakidobódásokra jellemző, hirtelen, erős dinamikus nyomásnövekedések.

Az eltéréseket okozó koronakidobódások időpontjait a SOHO űrszonda adatai alapján, valamint az Enlil 3D MHD modellek alapján kerestem meg, és egyeztettem össze a földközeli szondák és az üstökös körüli napszélnyomásadatok eltéréseivel. Az eltérések oka többnyire jól beazonosítható, egy vagy csupán a Földet, vagy csak az üstököst elérő koronakidobódásban. Ezen események időszakain kívül a két napszélnyomás adatsor jellemzően jó korrelációt mutat egymással.

A mágneses térből származtatott dinamikus nyomás eredményit összevetettem a Rosetta által mért elektron- és ionspektrumokkal is, a korreláció jól megfigyelhető. Nagyobb napszélnyomás értékek mellett, mint az várható, az elektronspektrumban mért beütésszámok jelentősen megemelkednek 10 és 1000 eV között, csendesebb időszakokban pedig, főleg 100 eV környékén kiürül a spektrum.

A napszélnyomás kiszámításával kapcsolatos eredményekről cikk készül, melyet a *Journal of Space Weather and Space Climate* újság *Planetary Space Weather* című különszámában tervezek megjelentetni.

Publikációk

Z. Nemeth, J. Burch, C. Goetz, R. Goldstein, P. Henri, C. Koenders, H. Madanian, K. Mandt, P. Mokashi, I. Richter, A. Timar, and K. Szego 2016, *Charged particle signatures of the dia-magnetic cavity of comet 67P/Churyumov–Gerasimenko*, MNRAS, Vol. 462 S415-S421 doi:10.1093/mnras/stw3028

Aniko Timar, Z. Nemeth, K. Szego, M. Dosa, A. Opitz, H. Madanian, C. Goetz, I. Richter 2017, Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov– Gerasimenko, MNRAS, Volume 469, Issue Suppl_2, Pages S723–S730, https://doi.org/10.1093/mnras/stx2628

Aniko Timar, Z. Nemeth, K. Szego, M. Dosa, A. Opitz, H. Madanian, C. Goetz, *Estimating the solar wind pressure at comet 67P from Rosetta magnetic field measurements*, Journal of Space Weather and Space Climate, in prep (a különszámba történő leadás határideje 2018 július 15)

Tanulmányi tevékenység az aktuális féléveben

• Rádiócsillagászat II (FIZ/2/065E)

Konferenciák a képzés alatt

- Magyar-orosz űrkutatási szeminárium, 2016 december 1-2, Budapest
- Magyar Űrkutatási Fórum, 2017 április 5-7, Sopron
- EGU General Assembly, 2017 április 23-28, Bécs
 - Poszter bemutatása "Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov-Gerasimenko" címen
- European Planetary Science Congress, 2017 szeptember 17-22, Riga
 - Poszter bemutatása "Estimating the solar wind pressure at comet 67P from Rosetta magnetic field measurements" címen
- Planetary Space Weather Workshop, IRAP, 2017 október 9-11, Toulouse
 - Előadás "Diamagnetic cavities at Comet 67P and a proxy for the solar wind dynamic pressure" címen
- 14th European Space Weather Week, 2017 november 27-december 1, Oostende
 - Poszter bemutatása "Planetary and cometary space weather predictions from observations near and far" címen

Hivatkozások:

Cravens T. E. Physics of the cometary contact surface, In ESA Proceedings of the 20th ESLAB Symposium on the Exploration of Halley's Comet. V. 1, Plasma and Gas, 241-246, 1986

Cravens T. E. Theory and observations of cometary ionospheres, Adv. Space Res., 7, 12, 147-158, 1987

Edberg N. J. T et al., Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements, Geophys. Res. Lett., 42, 4263–4269, 2015