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1 Introduction
Key requirements for quantum computers include qubits with long decoherence times and
a universal set of robust quantum gates [1]. Topological quantum computers address these
through encoding in non-local quasiparticles [2,3]. Majorana fermions [4] and parafermions [5],
which are excitations in topological superconductors [6, 7], fulfill these roles. Parafermions,
classified by a Zd index (with d = 2 for Majorana fermions), exhibit non-Abelian exchange
statistics, enabling topologically protected quantum gates. Braiding d > 2 parafermion zero
modes implements a broader set of quantum operations than Majorana zero modes [8].

Realizing parafermions typically relies on electron-electron interactions [7]. Some proposals
require combining superconductivity with fractional quantum Hall edge modes, which is diffi-
cult due to conflicting magnetic field requirements [9, 10]. Recent theories suggest alternative
platforms for Z4 parafermion zero modes using quantum spin Hall (QSH) insulators coupled to
superconductors, avoiding the need for strong magnetic fields [11, 12]. In these setups, inter-
actions create gaps in edge states while maintaining time-reversal symmetry, and parafermions
emerge at interfaces between gapped regions and superconductors. These Z4 parafermions show
a fourfold degenerate ground state and an 8π-periodic fractional Josephson effect.

Previous studies on parafermionic phases mostly utilize the bosonization technique, over-
looking high-energy or lattice-scale effects [13], however, lattice models offer insights into the
diverse landscape of parafermionic excitations. Density matrix renormalization group (DMRG)
methods have been used to explore dynamical excitations in parafermionic chains [14]. Recent
research thoroughly investigates the algebraic mapping between Z4 parafermions and spinful
fermions [15]. Additionally, fermionized parafermion chains have been studied, revealing exotic
electronic lattice models with unique interactions and hopping behaviors [16,17].

2 Work carried out in the previous three semesters
In my first three semesters, I constructed a simple lattice model for interacting spinful electrons
with parafermionic zero energy modes. By density matrix renormalization group calculations,
I identified a broad range of parameters, with well-localized zero modes, whose parafermionic
nature is substantiated by their unique 8π periodic Josephson spectrum. In this section, I
introduce a few major points of the work. For details, see the article on arXiv [18].

2.1 The model

In the following, I introduce a ladder Hamiltonian acting on spinful electrons which captures
the essential properties of the edge states of two-dimensional topological insulators without
explicitly treating the insulating bulk. In the proposed model, each electronic site has local
spin degrees of freedom denoted by ↑ and ↓, while the left and right leg of the ladder is referred
to simply by the labels L and R respectively. The Hamiltonian of the system can be decomposed
into three distinct parts:

H = Hkin +Hsc +Hint . (1)
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The first term describes the kinetic contributions, capturing propagation along the legs and
hopping across the rungs of the ladder,

Hkin =
∑
m

c†m (−µms0 ⊗ ζ0 + ts0 ⊗ ζx) cm (2)

− t

2

∑
m

c†m+1 (isz ⊗ ζz + s0 ⊗ ζx) cm + h.c. .

Here, sα and ζα are Pauli matrices acting on the spin and leg degrees of freedom respectively,
and c†m =

(
c†m,L,↑, c

†
m,R,↑, c

†
m,L,↓, c

†
m,R,↓

)
where c†m,ζ,s denotes the creation operator of an electron

with spin projection s ∈ {↑, ↓} on-site m of leg ζ ∈ {L,R}. t serves as an overall energy scale
for the system, while µm is a site-dependent potential.

For low energies, the kinetic term (2) describes the propagation of helical particles. Crucially
no terms are mixing the two legs, thus for low-energy helical particles, the two legs are decoupled
just as they would be for two spatially separated edges of a large two-dimensional topological
insulator.

The second term in the Hamiltonian (1) describes proximity to an s-wave superconductor,

Hsc =
∑
m,ζ

∆m,ζ

[
c†m,ζ,↑c

†
m,ζ,↓ + h.c.

]
, (3)

with a site and leg-dependent pair potential ∆m,ζ .
The last term, Hint, describes a short ranged microscopic interaction

Hint =
∑
m,ζ

Vm,ζ

[
c†m,ζ,↑cm,ζ,↓c

†
m+1,ζ,↑cm+1,ζ,↓ + h.c.

]
. (4)

2.2 Excitation spectrum

The phase with moderate interaction strength is endowed with one key indicator of the presence
of Z4 parafermions, in the form of zero energy excitation. In Fig. 1, the low energy many-body
excitation spectrum of the model is shown for ∆′/t = µ/t = 0 as the function of the interaction
strength V . For weak interaction, up to around V/t = 1.5, the system has a well-defined
ground state with even fermion parity, and the first excited state is a doubly degenerate odd
state. In the thermodynamic limit, the spectrum of this phase shows metallic characteristics
with a vanishing excitation gap. For intermediate interaction strengths, independent of the size
of the system, a phase with a fourfold degenerate ground state emerges with a considerable
gap in the excitation spectrum. At around V/t = 3 a second phase transition is observed. For
stronger interaction strengths, the degeneracy is lifted and the gap increases linearly with V .

2.3 Josephson spectrum

The Josephson spectrum, shown in Fig. 2, indicates the presence of parafermionic zero modes
in the considered model. The evolution of the energy of the localized four modes as the function
of phase bias φ in between two superconducting terminals can be used to characterize anyonic
excitations [19]. In particular, time-reversal invariant Majorana modes show a 4π periodic
modulation [20,21], while Z4 parafermions exhibit an 8π periodicity [7].
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Figure 1: Left side: excitation spectrum of the considered model as the function of the
interaction strength V . The two lowest energy even and odd parity states are marked by |ei⟩
and |oi⟩ with i ∈ {1, 2}. Ni = 20 and µ/t = 0 in the configuration depicted on the right side.

Figure 2: Left side: Schematic representation of a phase bias induced Josephson current
crossing two parafermionic zero modes. Right side: Josephson spectrum (right panel) of a

junction with N = 8 sites and interaction strength V/t = 2.2.

3 Work carried out in current semester

3.1 Adaptive phase exploration

One of the difficulties of creating a phase diagram is deciding the points for which the entan-
glement entropy is evaluated.

Up until this semester, I used two methods: partitioning the examined domain into equal-
sized rectangles and picking random points uniformly from the domain. Out of these two, the
second method was slightly better, because it yielded a "first-impression view" of the phases
faster. However, the problem with both of these methods is that a high percentage of the points
are "wasted" in the sense that they are placed in the "flat" parts of the phase diagram instead
of the more interesting phase edge regions.

An interesting solution for this problem is offered by Adaptive [22], which, to put it simply,
creates a triangular grid of the already existing points, assigns a loss value to each triangle, and
picks triangles to detail randomly, with higher picking probability for higher loss triangles.

This new method sounded promising, but I wasn’t yet able to achieve significant improve-
ment with it. I tried several different loss functions, both built-in and custom ones (using for
example triangle sizes, edge value differences, variances, and so on), and the losses themselves
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looked good (i.e. they had high values where I wanted to see more points) on my older data,
but they did not perform as expected on new systems. Because of this, I decided to put it back
on the shelves and come back to it in the future.

3.2 Polishing the first article

My first article was not accepted by Physical Review Letters, and because of that, a part of my
resources was delegated to polishing it. This work, among other tasks, included doing extra
calculations, reacting to reviewer comments, and refactoring the document.

3.3 Setbacks

My workstation, acquired through public procurement, broke at the start of March. Since it
was used for most of my non-HPC requiring calculations, data post-processing, and data and
code storing, I experienced a major setback. As of the beginning of June, the workstation
remains under repair with no definitive timeline for its return. Additionally, I had to redo
many calculations from the beginning due to this setback, causing further delays in my work.

4 Publications
My first paper, titled "A simple electronic ladder model harboring Z4 parafermions", is on the
brink of submission to Physical Review B. It is already available on arXiv [18].

5 Studies in current semester
I attended one class in the current semester: "Green függvényes technika a nanofizikában"
(subject code: "FIZ/1,3/068E")

6 Conferences in current semester
In the current semester, I was going to attend "Workshop: Recent progress on tensor network
methods" at Technical University of Munich, but could not do so due to unforeseen health-
related issues.

7 Teaching activity in current semester
In the current semester, I participated as a lecturer (for 1 class/week, i.e. 2 hours/week) in the
practice class "A fizika numerikus módszerei 1" (with subject code "fiznum1f19la"), which is a
course about useful python tools in physics for second-semester Physics BSc students.

8 Acknowledgements
My research was supported by the Ministry of Innovation and Technology and the National
Research, Development and Innovation Office within the Quantum Information National Lab-
oratory of Hungary.
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