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Domain generalization and representation learning for complex systems

3 main projects undertaken during the 2023 spring semester.

1. Broad Institute Immunotherapy single-cell RNAseq Gene regulatory
network inference challenge 2023.

We took part in an international challenge for prediction of the effect of single gene knockouts on B cell
cycle state relating to potency of immunotherapy in mice models. We took the GEARS [1]| model based
on a graph neural network (GNN) trained to learn knockout "perturbation" embeddings leveraging
co-expression and gene ontology graphs. The original model aimed to learn the change in gene expression
from an unperturbed cell to a perturbed one. We removed the MLP cell expression head after the GNN
layers and used this embedding as an input for our model. The motivation to use this model was its
natural representation of the inductive biases in the data. Due to such a small number of examples we
needed to inject domain knowledge as a constraint in order to have a model that could generalize to
unseen knockouts.

A gene's mechanism to impact the expression of other genes is partially through the proteins it expresses.
In order to leverage this knowledge we included protein information as an input to enrich the models
internal representation of the system. Each knockout can be represented by a bag of expressed protein
embeddings where some proteins may have a larger impact on the downstream process we are trying to
model (for example transcription factors) and some less. This problem is aligned naturally with the
weakly-supervised method of multi-instance-learning (MIL), where we used an attention layer to learn
weights for the importance of each "item" (protein embedding in our case) in providing predictive power
for the final state distribution of a given knockout experiment. Our MIL MLP model outputted an
embedding that was fed into the final model. Auxiliary Chromatin information was used as it should
contain information about the accessibility of genes. This data was embedded with an MLP and these
embeddings were concatenated with the outputs of a multi-instance learning MLP and GEARS
embeddings. The 3 branches were concatenated and fed into an MLP. During public validations steps we
achieved scores in the top 25 out of ~200 participating groups with 900 registered. The standard deviation
of scores was very small with only a few groups breaking out ahead for Challenge 1 and 2.
https://www.broadinstitute.org/news/machine-learning-experts-around-world-compete-improve-cancer-im

munotherapy

2. Modeling epistasis in fitness landscapes.

We explored sequence-to-function mapping with further modeling techniques and various protein protein
interaction datasets of systems including the receptor binding domain (RBD) of Sars-Cov-2. We explored
predicting Omicron ACE2 and Antibody binding from early Wuhan sequences and lab measurements to
see if we could generalize from early in the phylogenetic tree to later stages with Machine Learning [2].
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For ACE2 binding we found that the RBD of Omicron was under purifying selection. Omicron has
increased antibody escape in comparison to Wuhan and its only ACE2 binding selective pressure was to
bind sufficiently to this receptor to be contagious. We see that the local ACE fitness landscape topology of
Omicron and Wuhan are similar and a “local model” can perform as well as highly hyperparameter
optimized regularized regression models when predicting Omicron phenotypes. We explored
factorization as a concept to enable distant landscape predictions however we were limited by a lack of
relevant deep mutational scanning datasets in our ability to validate our hypotheses fully. We have built a
modular framework for extraditing this stream of research

https://github.com/ozkilim/combinatorial learning .Users can change sequences, embedding functions
and models in order to further explore their systems of interest. We hope to release this as an open source
codebase with benchmarks on various deep mutational scanning datasets. This project has involved
in-depth study into theoretical epistasis literature including NK-landscapes.

System vector-space “compounding arc uncertainty” visual proof |arcl| >> |arc2| T i acid D
Mutations . . D
|
f
Target sequence a |
H B EEE BN HE B EEE EEE
| .
Factorize ' Factorize
'
:
(M ITTTTTT] Al EEEEE EE
H } 2+1 factors
H
e QLT EITTTIT] EHHHHH\
CITTTTTIT] i
i
:
:
:
i
'
H

Visual proof that larger factors of targets should provide a less uncertain estimate of the target when combined. We can think of representing a sequence as a colored
vector where for example its angle is related to its amino acid and its color is its position in the protein. For each combinatorial mutant, the factors add in a specific

Unperturbed system

way. We assume that vector addition is a good model however there is some noise that models the epistatic non-linear effects. Due to uncertainty apriori in how
mutants will combine we can think of each consequential mutant existing on some arc in the vector space. When we have more factors we have more positions where
there is uncertainty in how the vectors add so the final arc is larger than the arc after the addition of larger factors. We are yet to validate or invalidate this hypothesis
successfully due to limited data availability. We have set up a framework for “neural cross attention factorization”.
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Analysis of generalization to the rugged landscape with regularization. a. Non-epistatic model. Here we assume that all mutations are additive. (Here the local
landscape is similar to the omicron local landscape.) b. Ridge L2 regularized linear regression results. Slightly out perform the summation model. The regularizing
factor relieves over-fitting. c. Visualization of regression coefficients on the RBD structure reveal the (top) binding interface. These results give evidence for a
purifying selection mechanism in the Omicron system.


https://github.com/ozkilim/combinatorial_learning

3. Transfer learning across physical scales

We were part of the Nightingale challenge for the task of cancer staging from WSIs and it was observed
that embedding networks seem to be a bottleneck in model predictive accuracy. Inspired by the similarity
between whole slide images (WSI) and satellite imagery we explored the extent to which satellite images
can be used within the self supervised learning framework DINO [3] to create better embeddings for
downstream WSI tasks utilizing the weakly supervised learning framework CLAM [4].

Scale invariance of image structure
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Initial results of SSL image scales vs downstream accuracy for WSI tasks. For most of the tasks satellite imagery provided better embeddings than ImageNet.
CUrrently we are in the process of scaling up our experiments to larger dataset sizes.

We aim to show that self-supervised pre-training of neural networks with satellite data set can create
superior embeddings to ImageNet for various data scales as tested on WSI digital pathology downstream
tasks across 5 data-sets representing diverse cancer types. We give an example where non-domain but
similarly structured data-sets can be leveraged for important medical tasks. We aim to release our
Dino-Trained ResNet50 model on ~10 Million earth images that can be used for downstream
ML-pathology tasks. We hypothesize that the shared constraints and complexity of systems of different
physical scales allows for this efficient transfer learning as well as the ability to extract a very large
“almost unlimited” scale pre-training dataset. This concept could be generalized and we hope that ML
practitioners may be inspired to search for external modality data-sets that may aid their task at hand. This
has been validated at low dataset sizes and with promising results.



Study activity
1 Module: Networks.
Complex exam: Networks, ML methods, Bioinformatics.

Teaching

Supervision of Tamas Zsiga for thesis project on modeling epistasis in the Sars-Cov-2 RBD system for
multiple antibody escape measurements.
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1. Kilim, Oz, et al. "Physical imaging parameter variation drives domain shift." Scientific Reports 12.1
(2022): 21302.

2. Kilim, Oz, et al. "SARS-CoV-2 receptor-binding domain deep mutational AlphaFold2 structures." Scientific
Data 10.1 (2023): 134.

3. Nagy, Sara Agnes, et al. "Impact evaluation of score classes and annotation regions in deep learning-based
dairy cow body condition prediction." Animals 13.2 (2023): 194. (played a minor role in finalizing the
machine learning method and its explanation in the paper)

4. Gréta Toth, Adrienn, et al. "Ixodes ricinus tick bacteriome alterations based on a climatically representative
survey in Hungary." bioRxiv (2022): 2022-10. (played a minor role in reviewing the paper internally)
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