On the Death of Type II Migration & What Might Replace It

Yoram Lithwick
Northwestern University/ CIERA

Motivation #1

Protoplanetary disks with large inner holes (a.k.a. "transitional disks")

ALMA image (Andrews et al. '19)

- -10% of disks have large inner holes
 - appears true for dust *and* gas

Can inner holes be caused by a planet?

Planet could shut off accretion from the outer disk, leading to an inner hole.

Saturn ring&moon

• But: simulations show narrow gap & no hole

(Zhu et al. '11)

• Planets are (at best) leaky dams

• see also: (Lubow & d'Angelo '06, Crid & Morbidelli '07, Duffell et al. '14, Fung et al. '14, Durmann & Kley '15, Kanagawa '17, '18)

• What if the planet is very massive (or a brown dwarf or binary star)?

What if the viscosity is very small?
 Then inflow is slower => easier for planet to dam it

(But have to run simulations for longer.)

1D Model of Planet+Disk

• Planets torque the disk by launching spiral density waves

(Lin & Papaloizou, '79), (Goldreich & Tremaine, '80)

• "Standard torque formula": determines the disk's viscous evolution in 1D (and backreaction onto planet => migration)

1D Model: results

• 1D models predict Jupiter-mass planets are *very* strong dams

• Syer & Clarke (1995): massive planet in disk (with migration)

Ward (1997): for planets mass > Jupiter, planet gap exponentially deep
 => planet locked into disk

Type II migration

(-800 citations)

Type II paradigm also predicts migration rates

• Could explain hot Jupiters (Lin et al. '96)

- Disk migration of close binary stars
 - Binary stars thought to form at ≥50AU. Observed binaries at ≤ 50 AU, should thus have been migrated inwards by disk

(Bonnell & Bate '94, Kratter et al. '08)

- Disk migration of supermassive black hole binaries
 - Could solve the "final parsec problem"

Simulation Setup

(Dempsey, Lee & Lithwick, '20)

• Place planet on fixed orbit in viscous disk & run to viscous steady state

• Parameters: $q = M_{planet}/M_{star}$

 α

h/r

1: What is effect of planet on disk?

2: What is effect of disk on planet (especially: migration rate)?

Assumptions:

1: Neglect migration

• ok when disk mass < planet mass

2: Disk has lived for a viscous time

3: 2D

4: α viscosity

5: etc. (locally isothermal equation of state, softening radius)

Result: Leaky dam

FARGO sim

$$q = 10^{-3}$$
$$\alpha = 10^{-3}$$

$$\alpha = 10^{-3}$$

Increase mass, decrease viscosity

$$K = \frac{q^2}{\alpha} \frac{1}{h^5}$$

- Larger K ⇒ deeper gaps & larger pileups
- Pileups up to -3

1D Models: what went wrong?

- Important for surface density profile
- Less important for migration rate (e.g., Scardoni et al. '20)

(Because when pileup -order unity, planet moves at - disk drift rate)

• What really happens:

(Lin & Papaloizou, '79, Goldreich & Tremaine, '80)

• What really happens:

planet
$$\Rightarrow$$
 waves \Rightarrow waves travel
$$t_{\text{ex}} = \text{standard torque formula}$$

(Lin & Papaloizou, '79, Goldreich & Tremaine, '80)

⇒ waves damp (viscosity/shocks)

$$\frac{\partial}{\partial t}$$
 (disk angular momentum) = $t_{\text{ex}} t_{\text{dep}}$

• Distance waves travel is small. But has huge impact on gap depth

• Theory for wave damping is an unsolved problem

(for Jupiter-mass planets. For lower-mass planets, see Goodman & Rafikov '01, Ginzburg & Sari, '18)

• Need simulations(?)

What happens at even higher K? (Dempsey et al, '21)

What happens at even higher K? (Dempsey et al, '21)

• Disk becomes eccentric for $q \gtrsim 2 \times 10^{-3}$ due to excitation by resonances [e.g., Kley & Dirksen 'o6, Teyssandier & Ogilvie '17]

Pileup goes away!

(eccentric outer disk overflows planet's orbit)

What happens at even higher K?

• super-Jupiters migrate outwards!

• Can perhaps explain: why hot Jupiters lower mass (Patzold & Rauer '02, Zucker & Mazeh '02) far out Jupiters (i.e., directly imaged)

Binary stars also found to migrate outwards

[Munoz et al. '19]

Also found by: [Miranda et al. '17], [Tang et al. '17], [Moody et al. '19], [Duffell et al '19]

Caveats

Assumptions:

- 1: Neglect migration
 - ok when disk mass < planet mass
- 2: Disk has lived for a viscous time
- 3: 2D Wave damping and disk eccentricity could be different in 3D. But simulations costly.
- 4: α viscosity
- 5: etc. (locally isothermal equation of state, softening radius)

Caveats

Assumptions:

- 1: Neglect migration
 - ok when disk mass < planet mass
- 2: Disk has lived for a viscous time
- 3: 2D Wave damping and disk eccentricity could be different in 3D. But simulations costly.
- 4: α viscosity Unsolved problem.

 Super-important, but super-difficult

5: etc. (locally isothermal equation of state, softening radius)

Summary

- From simulations:
 - Jupiter-mass planets produce modest pileups of gas density outside of their orbit
 - Super-Jupiters produce no pileup
 & migrate outwards

• Pileups likely too small to explain transition disks

Summary

Need better theory for wave damping

Need 3D & other kinds of viscosity

