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Unsolved problems

• How much cosmological information is 

contained, in principle, in a (perfect) weak 

lensing map?

• How well can we constrain background 

cosmology, in practice, from observed 

lensing data?



Gravitational Lensing
Abell 1689; Benitez et al. (2003)

Unlensed position(𝜃j )        
Observed position (𝜃i )



Weak lensing: convergence map
• Measure ellipticities of galaxies
• Convert to convergence (=magnification)
• Smooth over  ~arcmin2 patches  

Kaiser & Squires 1993
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• Real-space: two-point correlation functions
ξ(Θ ) = <𝜿(𝜽) 𝜿(𝜽+Θ)> 
< 𝛾 𝛾 >    in principle, same information

• Fourier space: convergence power spectrum
<𝜿(l) 𝜿*(l-l’)> = 2πẟ(l-l’) P(l)
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Convergence power spectrum

Kratochvil et al. 2012

Ωm = 0.26 ± 0.03 w = -1 ± 0.2 

~1 arcmin
~5 Mpc



Cosmology results

Kilo Degree Survey (KiDS-1000)
1006 deg2 imaging in 4 bands (25×106 gals)
Heymans et al. (2020)

Dark Energy Survey (DES; Year 3)
4143 deg2 imaging in 5 bands (100×106 gals)
Amon et al. (2021)

Subaru Hyper Suprime-Cam (HSC; Year 1)
137 deg2 imaging in 5 bands (9×106 gals)
Hikage et al. (2019)

Canada-France-Hawaii Telescope (CFHTLenS)
154 deg2 imaging (6×106 gals)
Kilbinger et al. (2013)

signal is weak (~1%), must average over many galaxies:
(0.3/√900)  à 900 galaxies for S/N=1 detection of a systematic γ ~0.01  
à 900×104 ~ 107 galaxies for ~1% error on  γ è need ~100 deg2

The Future:  Full HSC, Euclid, LSST, Roman 107 à 108 à 109+ gals
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Millennium simulation – Volker Springel, MPA

Cosmic Shear is Not Gaussian

PDF of convergence: 

Wang, ZH & May 
(2009)



Looking for beyond-Gaussian info

1 perturbative expansions:
higher-order moments (skewness, kurtosis …) 
higher-order correlation functions (3pt, 4pt …. )
Fourier counterparts (bispectra, trispectra ….)

2 Other morphological ”features”:
peaks, Minkowski functionals, shapelets …

3 ”Gaussianization”: transform lensing field locally
4  machine learning: can be cast as 2D image classification

- how do these respond to cosmology vs systematics
- extra info is from small, nonlinear scales - modeling 
- how do you tell whether most info has been found?

Approaches:

Questions:
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• w unconstrained

• Adding peaks improves 
constraint by factor ~2

• Majority of constraint is
coming from low peaks

• No tension with Planck

Forward-modeling CFHTLenS
Liu et al. (2015)



How to go beyond this?  
Not quite “cats vs dogs” but these 2D images do look different..

w=-1 w=-0.8



How to go beyond this?  
Not quite “cats vs dogs” but these 2D images do look different..

w=-1 w=-0.8

Cheetah? Leopard?                           Leopard? Cheetah?



Training set of maps (50-70%) CNN (black box) Loss function (to be minimized)

Update weights
(e.g. Adams optimizer,

stochastic gradient descent)

Deep convolutional neural network

Training



Constraints from CNN



Noiseless maps

Constraints improve by factor of 13(!).      Passes Gaussian test
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CNN on noisy maps

Confidence range ratios around two input cosmologies
(Ωm , σ8 )= (0.26,0.8) - (0.309, 0.816)



Baryons
• Hydro simulations  vs

• Baryon correction models (BCM)
Arico+ 2020
Schneider & Teyssier 2015

Impact on halo profile Can fit 3d matter power spectra



Jointly fit cosmology & baryons
Lu, ZH  & Zorrilla 2022

• Can predict parameters, 
• tilt/bias (corrected in likelihood)

• Network can learn Mc + M1,0 
• but not β or ηCosmology

Baryons



Baryons with machine learning
Lu, ZH  & Zorrilla 2022

• CNN improves over peaks/power spectrum by factor of ~1.8.     
• With baryons, peaks degrade the most
• CNN was unable to learn the medium and large-scale power spectrum 

– so their combination mitigates degradation
• For baryon parameters, CNN comparable to power spectrum but 

independent 



Fitting HSC data with CNN

Include:
1. Photo-z errors
2. Baryon effects
3. Intrinsic alignments

Lu, ZH & Li,  in prep
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lensing map?
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lensing data?

à At least an order of magnitude more than in power spectrum
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Conclusions

® Beyond-Gaussian info: Peaks constrain Ωm, s8  tighter than the power 

spectrum – errors improve by up to a factor of ~2

® Baryons: can be modeled with a flexible parameterized model, generally 

degrade constraints by a factor of a few.

® Neural networks: can improve constraints by a factor of >10 in perfect 

simulations, and by factor of ~2 in presence of noise and/or baryons

® Just the beginning:  107-8 à few x 109 gals with LSST, Euclid, Roman



The End


