Weak lensing cosmology beyond two-point functions

Zoltán Haiman (Columbia University)

Unsolved Problems in Astrophysics

Jerusalem

4-8 December 2022

Weak lensing cosmology beyond two-point functions

Zoltán Haiman (Columbia University)

Unsolved Problems in Astrophysics

Jerusalem

4-8 December 2022

Unsolved problems

 How much cosmological information is contained, in principle, in a (perfect) weak lensing map?

 How well can we constrain background cosmology, in practice, from observed lensing data?

Gravitational Lensing

Abell 1689; Benitez et al. (2003)

Unlensed position(θ_j) Observed position (θ_i)

$$f_{obs}(\theta_i) = f_s(A_{ij}\theta_j)$$
$$A_{ij} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

Weak lensing: convergence map

- Measure ellipticities of galaxies
- Convert to convergence (=magnification)
- Smooth over ~arcmin² patches

$$\hat{\kappa}(\mathbf{s}) = \frac{1}{2} \left(\frac{k_1^2 - k_2^2}{k_1^2 + k_2^2} \right) \hat{\gamma}_1(\mathbf{s}) + \frac{k_1 k_2}{k_1^2 + k_2^2} \hat{\gamma}_2(\mathbf{s})$$

Kaiser & Squires 1993

Workhorse: 2-point functions

• Real-space: two-point correlation functions $\xi(\Theta) = \langle \vec{\kappa}(\vec{\theta}) | \vec{\kappa}(\vec{\theta} + \vec{\Theta}) \rangle$ $\langle \vec{\gamma} | \vec{\gamma} \rangle$ in principle, same information

• Fourier space: convergence power spectrum $\langle \kappa(\vec{l}) \kappa^*(\vec{l}-\vec{l'}) \rangle = 2\pi \delta(\vec{l}-\vec{l'}) P(l)$

$$\begin{split} P_{\kappa}(l) &= \frac{9}{4} \Omega_m^2 \frac{H_0^4}{c^4} \int_0^{\infty} dz \quad \left[\frac{d\chi(z)}{dz} \right] \quad \frac{\xi^2 \left[\chi(z) \right]}{a^2(z)} P_{3D} \left(\frac{l}{\chi(z)}; z \right) ,\\ \xi(\chi) &= \int_{z}^{\infty} dz' \ n_{gal}(z') \ \frac{\chi(z') - \chi(z)}{\chi(z')} . \end{split}$$

Workhorse: 2-point functions

• Real-space: two-point correlation functions $\xi(\Theta) = \langle \vec{\kappa}(\vec{\theta}) | \vec{\kappa}(\vec{\theta} + \vec{\Theta}) \rangle$ $\langle \vec{\gamma} | \vec{\gamma} \rangle$ in principle, same information

• Fourier space: convergence power spectrum $\langle \kappa(\vec{l}) \kappa^*(\vec{l}-\vec{l'}) \rangle = 2\pi \delta(\vec{l}-\vec{l'}) P(l)$

$$P_{\kappa}(l) = \frac{9}{4} \Omega_m^2 \frac{H_0^4}{c^4} \int_0^{\infty} dz \quad \left[\frac{d\chi(z)}{dz}\right] \quad \frac{\xi^2 [\chi(z)]}{a^2(z)} \quad P_{3D}\left(\frac{l}{\chi(z)};z\right) ,$$

$$\xi(\chi) = \int_z^{\infty} dz' \quad n_{gal}(z') \quad \frac{\chi(z') - \chi(z)}{\chi(z')} . \qquad \text{geometry}$$

Workhorse: 2-point functions

• Real-space: two-point correlation functions $\xi(\Theta) = \langle \vec{\kappa}(\vec{\theta}) | \vec{\kappa}(\vec{\theta} + \vec{\Theta}) \rangle$ $\langle \vec{\gamma} | \vec{\gamma} \rangle$ in principle, same information

• Fourier space: convergence power spectrum $\langle \kappa(\vec{l}) \kappa^*(\vec{l}-\vec{l'}) \rangle = 2\pi \delta(\vec{l}-\vec{l'}) P(l)$

$$P_{\kappa}(l) = \frac{9}{4} \Omega_{n}^{2} \frac{H_{0}^{4}}{c^{4}} \int_{0}^{\infty} dz \quad \left[\frac{d\chi(z)}{dz}\right] \quad \frac{\xi^{2} \left[\chi(z)\right]}{a^{2}(z)} P_{3D}\left(\frac{l}{\chi(z)};z\right) ,$$

$$\xi(\chi) = \int_{z}^{\infty} dz' \; n_{gal}(z') \; \frac{\chi(z') - \chi(z)}{\chi(z')} \; . \qquad \begin{array}{c} \text{geometry} \\ \text{growth} \end{array}$$

Convergence power spectrum

Kratochvil et al. 2012

Cosmology results

signal is weak (~1%), must average over many galaxies: (0.3/ $\sqrt{900}$) \rightarrow 900 galaxies for S/N=1 detection of a systematic $\gamma \sim 0.01$ \rightarrow 900×10⁴ ~ 10⁷ galaxies for ~1% error on $\gamma \rightarrow$ need ~100 deg²

Canada-France-Hawaii Telescope (CFHTLenS) 154 deg² imaging (6×10⁶ gals) Kilbinger et al. (2013)

Kilo Degree Survey (KiDS-1000) 1006 deg² imaging in 4 bands (25×10⁶ gals) Heymans et al. (2020)

Dark Energy Survey (DES; Year 3) 4143 deg² imaging in 5 bands (100×10⁶ gals) Amon et al. (2021)

Subaru Hyper Suprime-Cam (HSC; Year 1) 137 deg² imaging in 5 bands (9×10⁶ gals) **Hikage et al. (2019)**

The Future: Full HSC, Euclid, LSST, Roman $10^7 \rightarrow 10^8 \rightarrow 10^9$ + gals

lensing by cosmic structures

mock Gaussian equivalent

PDF of convergence:

Looking for beyond-Gaussian info

Approaches:

- 1 perturbative expansions:
 - higher-order moments (skewness, kurtosis ...)
 - higher-order correlation functions (3pt, 4pt)
 - Fourier counterparts (bispectra, trispectra)
- 2 Other morphological "features":
 - peaks, Minkowski functionals, shapelets ...
- 3 "Gaussianization": transform lensing field locally
- 4 machine learning: can be cast as 2D image classification

Questions:

- how do these respond to cosmology vs systematics
- extra info is from small, nonlinear scales modeling
- how do you tell whether most info has been found?

Peak Counts

analytic predictions for GRF with same power spec.

Peak counts Non-Gaussian

Cosmology dependence Non-Gaussian

Peak Counts

analytic predictions for GRF with same power spec.

Peak counts Non-Gaussian

Cosmology dependence Non-Gaussian

Forward-modeling CFHTLenS

Liu et al. (2015)

- w unconstrained
- Adding peaks improves constraint by factor ~2
- Majority of constraint is coming from low peaks
- No tension with Planck

	w-	Ω_m	$\Omega_m - \sigma_8$		
	68%	95%	68%	95%	
power spectrum	1.00	1.74	1.00	1.99	
peak counts	0.41	1.01	0.59	1.51	
combined	0.42	1.05	0.61	1.46	

How to go beyond this?

Not quite "cats vs dogs" but these 2D images do look different..

w=-1

How to go beyond this?

Not quite "cats vs dogs" but these 2D images do look different..

w=-1

Leopard? Cheetah?

w=-0.8

Deep convolutional neural network

Constraints from CNN

Noiseless maps

Constraints improve by factor of 13(!).

Passes Gaussian test

Unsolved problems

 How much cosmological information is contained, in principle, in a (perfect) weak lensing map?

 How well can we constrain background cosmology, in practice, from observed lensing data?

Unsolved problems

 How much cosmological information is contained, in principle, in a (perfect) lensing map?

 \rightarrow At least an order of magnitude more than in power spectrum

 How well can we constrain background cosmology, in practice, from observed lensing data?

CNN on noisy maps

Confidence range ratios around two input cosmologies $(\Omega_{\rm m}, \sigma_8) = (0.26, 0.8) - (0.309, 0.816)$

Table 2. The table lists the relative sizes of the 68 percent credible contour areas of the power spectrum and peak counts compared to the CNN. The CNN achieves smaller 68 percent credible contour areas than the power spectrum for any noise level, and also outperforms the peak counts when the galaxy density is at least $30 \,\mathrm{arcmin}^{-2}$.

A ₆₈ ratio	Noiseless	100 gal arcmin ⁻²	75 gal arcmin ⁻²	50 gal arcmin ⁻²	30 gal arcmin ⁻²	10 gal arcmin ⁻²
Power spectrum / CNN	13	3.7–4.6	3.5–4.1	3–3.6	2.4–2.8	1.4–1.5
Peak counts / CNN	8	1.5–2.1	1.4–1.9	1.2–1.7	1.05–1.42	0.9–1.1

Baryons

Hydro simulations *vs*

Arico+ 2020 Baryon correction models (BCM) Schneider & Teyssier 2015

Parameter	Description	Fiducial Value $(z = 0)$		
M _c	Halo mass scale for retaining half of the total gas	$3.3 \times 10^{13} h^{-1} \mathrm{M_{\odot}}$		
M_1	Characteristic halo mass for a galaxy mass fraction $\epsilon = 0.023$	$8.63 \times 10^{11} h^{-1} \mathrm{M_{\odot}}$		
η	Maximum distance of gas ejection in terms of the halo escape radius	0.54		
β	Slope of the gas fraction as a function of halo mass	0.12		

Impact on halo profile

Jointly fit cosmology & baryons

Lu, ZH & Zorrilla 2022

Cosmology

- Can predict parameters,
- tilt/bias (corrected in likelihood)

Baryons

- Network can learn M_c + M_{1.0}
- but not β or η

Baryons with machine learning

Lu, ZH & Zorrilla 2022

Methods		$\Omega_{\rm m} - \sigma_8$			$M_{1,0}-\eta$			
	$S_{\rm full}~(\times 10^{-4})$	$S_{\rm fid}~(\times 10^{-4})$	$S_{\rm full}/S_{\rm fid}$	$S_{\text{full}} (\times 10^{-2})$	$S_{\rm fid} (\times 10^{-2})$	$S_{\rm full}/S_{\rm fid}$		
Power spectrum	3.45	0.93	3.71	10.4	3.6	2.88		
Peak counts	5.89	0.94	6.28	30.6	7.3	4.16		
CNN	2.08	0.44	4.70	13.0	3.7	3.48		
CNN + power spectrum (L)	1.27	0.44	2.91	7.1	2.6	2.69		
CNN + power spectrum (M)	1.11	0.42	2.61	6.9	2.8	2.41		
CNN + power spectrum (S)	1.74	0.41	4.23	9.7	3.0	3.26		
CNN + power spectrum (L, M)	1.01	0.42	2.39	5.2	2.3	2.24		
CNN + power spectrum (full)	0.96	0.40	2.41	4.6	2.1	2.24		

- CNN improves over peaks/power spectrum by factor of ~1.8.
- With baryons, peaks degrade the most
- CNN was unable to learn the medium and large-scale power spectrum – so their combination mitigates degradation
- For baryon parameters, CNN comparable to power spectrum but independent

Fitting HSC data with CNN

Lu, ZH & Li, in prep

Include:

Photo-z errors
Baryon effects
Intrinsic alignments

Unsolved problems

 How much cosmological information is contained, in principle, in a (perfect) lensing map?

ightarrow At least an order of magnitude more than in power spectrum

 How well can we constrain background cosmology, in practice, from observed lensing data?

Unsolved problems

 How much cosmological information is contained, in principle, in a (perfect) lensing map?

ightarrow At least an order of magnitude more than in power spectrum

 How well can we constrain background cosmology, in practice, from observed lensing data?

 \rightarrow Factor of ~two better than power spectrum

Conclusions

• Beyond-Gaussian info: Peaks constrain Ω_m , σ_8 tighter than the power spectrum – errors improve by up to a factor of ~2

 Baryons: can be modeled with a flexible parameterized model, generally degrade constraints by a factor of a few.

Neural networks: can improve constraints by a factor of >10 in perfect simulations, and by factor of ~2 in presence of noise and/or baryons
Just the beginning: 10⁷⁻⁸ → few x 10⁹ gals with LSST, Euclid, Roman

The End