Torwards be-messenger Galactic Archeology with Gravitational Waves

Elena Maria Rossi Leiden Observatory

credits to my (ex) students

Valeriya Korol, MPA fellow

Orlin Koop PhD Groningen

Martijn Wilhelm, PhD Leiden

Michael Keim PhD Yale

What can gravitational waves uniquely bring to this field?

Korol, Rossi & Barausse 2019

Rossi et al. in prep.

Right Ascension (deg)

GW Sources: White Dwarf (WD) Binaries

now~10⁸ in Milky Way

Credit: NASA/Tod Strohmay

Korol, EMR et al. 2017, Breivik +17; Kremer+2017, Lamberts +2019 Nelemans + 2001, 2004, Nissanke +2012, Shah et al. 2012; Ruiter et al. 2010, Toonen + 2012

now ~10⁵ in Milky Way

Credit: NASA/CXC/M. Weiss

Getting information from the other side of the Galactic Centre

Stellar evolution code: SeBa (S. Portogeis-Zwart +96) in S. Toonen's implementation and validation (Toonen + 2012, 2017)

PINK: 10-40 thousands w LISA **BLUE:** ~200 W Gaia+LSST

Korol, EMR + 17

The strengths of a bi-messenger approach

Gravitational Waves

- no absorption
- single distance measurement method
- tracing low mass stars everywhere in a galaxy and Local Group

Optical electromagnetic Waves

- absorption
- stellar crowding
- parallax, spectroscopic distance, variable stars, etc...
- low and high mass stars
- Detecting motion (dynamics)

What has been explored so far...

Milky Way • Tracing the global stellar mass distribution with GWs only (Benacquista & Holley-Bockelmann '06; Adams & Cornish '12, '14; Georgousi et al. 2022; Breivik+20) and in combination of EM dynamical tracers (Korol,

EMR, et al. 2019)

• Directly imaging and characterising the Milky Way's bar (Wilhelm, Korol, EMR & D'Onghia 2021)

Milky Way's satellites

- Korol et al. 2021, Lamberts + 2021)
- Infer the mass of Satellites (Korol et al. (incl. Belokurov, EMR; Korol, Belokurov, et al. 2021)
- Discovering new satellites (Roebber, Elinore et al. 2020)
- Infer the star formation history (Keim, Korol & EMR 2022)

• Statistically characterise the populations of DWDs in the Local Group (Koop, Korol, EMR 2018,

Mapping the Central bar & Spiral Arms

stellar mass density

Simulated N-body Galaxy by E. D'Onghia

DWD number density

Wilhelm, Korol, EMR & D'Onghia 2021

Fourier analysis: Amplitude of m=2

Bar's Axis ratio derived from total stellar distribution and from WD consistent within one sigma

Fourier analysis: Phase of m=2 spiral arms in disc value of phase Length of the bar and viewing angle where phase = constant

What has been explored so far...

Milky Way • Tracing the global stellar mass distribution with GWs only (Benacquista & Holley-Bockelmann '06; Adams & Cornish '12, '14; Georgousi et al. 2022; Breivik+20) and in combination of EM dynamical tracers (Korol,

EMR, et al. 2019)

• Directly imageing and characterising the Milky Way's bar (Wilhelm, Korol, EMR & D'Onghia 2021)

Milky Way's satellites

- Korol et al.2021, Lamberts + 2021)
- Infer the mass of Satellites (Korol et al. (incl. Belokurov, EMR; Korol, Belokurov, et al. 2021)
- Discovering new satellites (Roebber, Elinore et al. 2020)
- Infer the star formation history (Keim, Korol & EMR 2022)

• Statistically characterise the populations of DWDs in the Local Group (Koop, Korol, EMR 2018,

Supernova la Progenitors (unsolved problem!)

Looking up and out of the Galaxy

left of lines are observed parameter space

Koop, Korol & EMR 18

The Large Magellanic Cloud

LMC will be a resolved galaxy in LISA sky

LMC simulation

Underlying numerical simulation by Lucchini et al. 2020

LMC model from observations

Keim, Korol & EMR 2022.

Can we infer SFH from GW observations? 2 models for LMC Star Formation History

From observations (Harris+Zaritsky 09)

star formation in the Lucchini et al. <---

Keim, Korol & EMR 2022

Can we infer SFH from GW observations? 2 models for LMC Star Formation History

613 total; 125 super Chandrasekar 🔶 - -

Difference of a factor of 2 in total detections and ~2.7 in massive DWDs Keim, Korol & EMR 2022

Can we infer SFH from GW observations? 2 models for LMC Star Formation History

613 total; 125 super Chandrasekar

Keim, Korol & EMR 2022

