Towards the Nature and Origin of Super-Earths

Diana Dragomir

Hubble Fellow MIT Kavli Institute

> UNSOLVED PROBLEMS Budapest, Hungary July 2, 2018

Small Exoplanets Are Common

How to probe vertical structure/interior of disks?

Measuring turbulence is hard

Uncertain chemical inventories

Measuring the dust mass is hard

Time evolution

Exoplanet Atmospheres: Transmission spectroscopy

Can constrain:

- scale height (how puffy the atmosphere is)
- atmospheric composition
- molecular abundances

Diana Dragomir

First Challenge: Small Exoplanet Atmospheres Are Often Cloudy...

Diana Dragomir

... But Not Always

HAT-P-11b

Do Clouds/Hazes Correlate With Planet Temperatures?

Other Challenges for Transmission Spectroscopy

Only probes day-night terminator

Degeneracy between molecular abundances and reference pressure

Heng & Kitzmann (2017)

Understanding Super-Earths

Diana Dragomir

Other Paths: Emission Spectroscopy

Can constrain:

- the temperature pressure profile, and thus the atmospheric structure
- heat redistribution efficiency
- atmospheric composition

The first emission spectrum of a super-Earth (55 Cnc e)

Transiting Exoplanet Survey Satellite (TESS)

Sullivan et al. (2015)

Launched April 18, 2018

Other Paths: Small Planet Mass-Radius Diagram

Takeaways

- Connecting super-Earth composition to their formation is a multi-nuanced challenge
- Transmission spectroscopy is prone to degeneracies
 - but for now it is the only way to probe the atmospheres of most (transiting) super-Earths
- Use complementary approaches to enhance the efficiency of super-Earth characterization

emission spectroscopy and bulk density statistics