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Fig. 1.—(a) Positions of all stars in our sample (asterisks) overlaid on a map of the two-dimensional velocity dispersion (gray scale). The sizes of the asterisks
represent the stars’ 2.2 mm brightness. The black region is a minimum in the velocity dispersion, located ∼2! from Sgr A* (black plus sign), and is caused by
five comoving stars (blue), which define the newly identified IRS 16 SW comoving group. (b) A K-band (2.2 mm) speckle image showing the clustering of bright
sources at the position of the IRS 16 SW comoving group. Group members are marked with blue crosses. Bottom: Proper motions of the IRS 16 SW comoving
group members. In each 0!.1#0!.1 panel, the stellar positions are plotted with different years’ data labeled with different colors.

the main maps and above 0.5 in the submaps. Only sources
detected in all three submaps are included in the final source
list for each observation. The coordinate system for each list
is transformed to a common local reference frame by mini-
mizing the net offsets of all stars as described in Ghez et al.
(1998, 2005). Centroiding uncertainties are ∼1 mas, while align-
ment uncertainties range from ∼1 to 5 mas. The final relative
positional uncertainty is the quadrature sum of the centroid-
ing and alignment uncertainties and is ∼2 mas for the bright
(K " 13.5) stars near IRS 16 SW. Proper motions are derived
by fitting lines to the positions as a function of time, weighted
by the positional uncertainties. We conservatively require that
only sources detected in nine or more epochs, out of 22 total
epochs, are included in the final sample. This results in a final
sample of 180 stars, which have an average total proper-motion
uncertainty of 0.53 mas yr!1 for all sources located beyond 1!
of the central SBH. All proper motions were converted to linear
velocities using a distance of 8 kpc, and the uncertainty in this
distance is not included in the velocity uncertainties (Reid
1993).

3. RESULTS

A two-dimensional velocity dispersion map of the stars in
the sample reveals a minimum located between IRS 16 SW
and IRS 16 SW-E (Fig. 1a, gray scale). The velocity dispersion
map is produced by calculating, at each position separated by
0!.1, the following quantity for the nearest six stars: p2jintrinsic

! [error2( x, i)" error2( y, i)]/[2(N ! 1)], where theN2j ! v vmeasured ip0
first term is the dispersion of the measured proper motions and
the second term removes the bias introduced by the uncertain-
ties in the proper-motion measurements. The minimum in the
velocity dispersion map is insensitive to the number of stars
used in the calculation; using the nearest five to the nearest

eight stars produces a similar result. The significance of the
velocity dispersion minimum is determined by comparing it
with the velocity dispersion of stars in the sample that are at
comparable radii (1! ≤ r2D ≤ 2!.6). Because the young stars are
known to show some level of dynamical anisotropy due to
coherent rotation about the SBH (Genzel et al. 2003), we re-
strict the comparison sample to known late-type stars (Figer et
al. 2003; Ott 2003). The minimum in the velocity dispersion
is significantly lower (4.6 j) than the field velocity dispersion.
The velocity dispersion minimum arises from a comoving

group of stars; to formally define the members of the comov-
ing group, we must first eliminate those stars that appear near
the group as a result of projection effects. Formal membership
is determined by considering the difference between the ve-
locity of each individual star and the group’s average velocity.
Within the region of the velocity dispersion minimum, only
five stars have velocity offsets that are consistently ≤2j. Using
only these five stars to redefine the values of group velocity
and velocity dispersion, we find no additional stars with a total
velocity offset less than 3.5 j within a 1!.1 search radius. We
therefore define these five stars, which include IRS 16 SW,
as the members of the comoving group (Table 1 and Fig. 1,
bottom). The IRS 16 SW comoving group has an average and
rms distance from Sgr A* of 1!.92 and 0!.43, respectively, with
a velocity dispersion of 36!13 km s!1 in right ascension and
38!13 km s!1 in declination.
There are two additional, independent lines of evidence sup-

porting the existence of this comoving group. First, two of the
group members, IRS 16 SW and IRS 16 SW-E, have identical
radial velocities (Ott 2003); the other members, unfortunately,
have no measured radial velocities. Second, the stellar number
density counts show an enhancement at the position of the
IRS 16 SW comoving group (see Fig. 1b). Since the stellar
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density distribution to the one-dimensional velocity dispersion.
We express the velocity dispersion as
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where G is the gravitational constant, α is the slope of the
density profile, and M• denotes the mass of the SMBH
(Alexander 1999; Alexander & Pfuhl 2014).

We consider a binary at distance r• from the SMBH. We
adapt the evaporation timescale equation to depend explicitly
on the distance r• (Binney & Tremaine 2008; Alexander &
Pfuhl 2014; Stephan et al. 2016):
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where Mbin is the total mass of the binary and 〈M*〉 is the
average mass of a star in the GC.6 The evaporation timescale
also depends on the Coulomb logarithm lnΛ, where Λ is
the ratio of the maximum to minimum impact parameter. In the
evaporation process, =b a 2max bin for the passing star to
interact more strongly with one of the binary members.
Otherwise, the encounter will affect the center of mass. The
strongest deflection, 90◦, gives bmin. We obtain the following
expression from Alexander & Pfuhl (2014):
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In the last transition, we substitute Equation (2) for σ and
GMbin/abin for the orbital velocity of the binary, averaged over
the mean anomaly. This approximation assumes that the inner
binary orbital timescale is shorter than the orbital timescale
about the SMBH.

Combining these equations and assumptions, we find that the
evaporation time has r• dependence:
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We illustrate the dependence of the evaporation timescale as a
function of distance in Figure 1. Specifically, we plot the
evaporation time of an equal mass Mbin= 2Me binary with 0.1
and 0.5au semimajor axis for α= 1 to α= 2 in dark blue. The
darkest line represents α= 1.75, the profile for a dynamically
relaxed single-mass system (Bahcall & Wolf 1976). As the
evaporation process relies on weak encounters, the true
evaporation time of a binary system likely does not differ
substantially from the evaporation timescale (Perets et al. 2007).
We extend the axes in Figure 1 to extreme values close to the
SMBH, where our assumptions may break down, in particular
regarding a continuous distribution of objects. However, we
note that a recent analysis of S0-2 observations suggests that

low-mass objects may still reside interior to its orbit (e.g., Naoz
et al. 2020).

2.1.1. Binaries Soften with Time

The evaporation process requires that a binary begins in a
soft configuration. A soft binary has a gravitational binding
energy that is less than the kinetic energy of the neighboring
stars:
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where E= Gm1m2/(2abin) and 〈M*〉 is the average stellar mass
in the GC. This configuration allows a passing star to interact
more strongly with one of the binary members. This condition
places a minimum on the semimajor axis a binary can have to
evaporate. Following Alexander & Pfuhl (2014), we refer to s
as the softness parameter.
Additionally, soft binaries tend to soften over time. The

evaporation timescale depends on abin. However, as abin increases
with time, the evaporation timescale depends on when in its

Figure 1. Two examples for the relevant timescales in the problem, as a
function of the distance of the binary from the supermassive black hole. We
consider an equal-mass binary with Mbin= 2Me and semimajor axis 0.1au
and 0.5au for the top and bottom panels, respectively. For the timescales that
depend on the density, we consider a range of power laws from α= 1 to
α= 2. All of the timescales increase with decreasing α. Relevant timescales
include the evaporation timescale from Equation (3) (dark blue), the
evaporation timescale with the history parameter (red, labeled Max. Evap.),
the relaxation timescale (gold), the collision timescale (green), and the
Eccentric Kozai–Lidov quadrupole timescale (purple). The darkest lines have
α= 1.75 (Bahcall & Wolf 1976).

6 We assume that rá ñ » á ñn M M2
* * from the evaporation timescale equation in

Alexander & Pfuhl (2014). However, an alternative is to define
= á ñ á ñM M M2
* * * such that ρM* appears in the denominator of Equation (16)

following the notation of Kocsis & Tremaine (2011).
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where G is the gravitational constant, α is the slope of the
density profile, and M• denotes the mass of the SMBH
(Alexander 1999; Alexander & Pfuhl 2014).

We consider a binary at distance r• from the SMBH. We
adapt the evaporation timescale equation to depend explicitly
on the distance r• (Binney & Tremaine 2008; Alexander &
Pfuhl 2014; Stephan et al. 2016):
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where Mbin is the total mass of the binary and 〈M*〉 is the
average mass of a star in the GC.6 The evaporation timescale
also depends on the Coulomb logarithm lnΛ, where Λ is
the ratio of the maximum to minimum impact parameter. In the
evaporation process, =b a 2max bin for the passing star to
interact more strongly with one of the binary members.
Otherwise, the encounter will affect the center of mass. The
strongest deflection, 90◦, gives bmin. We obtain the following
expression from Alexander & Pfuhl (2014):
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In the last transition, we substitute Equation (2) for σ and
GMbin/abin for the orbital velocity of the binary, averaged over
the mean anomaly. This approximation assumes that the inner
binary orbital timescale is shorter than the orbital timescale
about the SMBH.

Combining these equations and assumptions, we find that the
evaporation time has r• dependence:
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We illustrate the dependence of the evaporation timescale as a
function of distance in Figure 1. Specifically, we plot the
evaporation time of an equal mass Mbin= 2Me binary with 0.1
and 0.5au semimajor axis for α= 1 to α= 2 in dark blue. The
darkest line represents α= 1.75, the profile for a dynamically
relaxed single-mass system (Bahcall & Wolf 1976). As the
evaporation process relies on weak encounters, the true
evaporation time of a binary system likely does not differ
substantially from the evaporation timescale (Perets et al. 2007).
We extend the axes in Figure 1 to extreme values close to the
SMBH, where our assumptions may break down, in particular
regarding a continuous distribution of objects. However, we
note that a recent analysis of S0-2 observations suggests that

low-mass objects may still reside interior to its orbit (e.g., Naoz
et al. 2020).

2.1.1. Binaries Soften with Time

The evaporation process requires that a binary begins in a
soft configuration. A soft binary has a gravitational binding
energy that is less than the kinetic energy of the neighboring
stars:
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where E= Gm1m2/(2abin) and 〈M*〉 is the average stellar mass
in the GC. This configuration allows a passing star to interact
more strongly with one of the binary members. This condition
places a minimum on the semimajor axis a binary can have to
evaporate. Following Alexander & Pfuhl (2014), we refer to s
as the softness parameter.
Additionally, soft binaries tend to soften over time. The

evaporation timescale depends on abin. However, as abin increases
with time, the evaporation timescale depends on when in its

Figure 1. Two examples for the relevant timescales in the problem, as a
function of the distance of the binary from the supermassive black hole. We
consider an equal-mass binary with Mbin= 2Me and semimajor axis 0.1au
and 0.5au for the top and bottom panels, respectively. For the timescales that
depend on the density, we consider a range of power laws from α= 1 to
α= 2. All of the timescales increase with decreasing α. Relevant timescales
include the evaporation timescale from Equation (3) (dark blue), the
evaporation timescale with the history parameter (red, labeled Max. Evap.),
the relaxation timescale (gold), the collision timescale (green), and the
Eccentric Kozai–Lidov quadrupole timescale (purple). The darkest lines have
α= 1.75 (Bahcall & Wolf 1976).
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Binaries at the heart of galaxies
The Eccentric Kozai-Lidov (EKL) mechanism 
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Binaries at the heart of galaxies
+ EKL (eccentric Kozai-Lidov) 
+ General relativity (1PN) + GW 
+ Tides 
+ Post main sequence stellar evolution (single 

and binary) 
+ Unbinding the binary (fly-by) (see Rose, Naoz et al 2020) 

+ Disruption due to the SMBH  
+ Updated binary stellar evolution for solar and 

sub solar metallicities (e.g., Breivik et al 2019) 
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Witzel … Naoz et al (2014) 

Formation of G2-like objects 

Gillessen et al (2012,2018)
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Binaries at the heart of galaxies
Formation of G2-like objects 3500 A. P. Stephan et al.

Figure 5. Binary, evaporated and merger fractions over time. Plotted are the fractions of binaries, evaporated binaries and merged binaries as a function of
time. The solid, coloured lines show the results for the (normal) inefficient tide model, while the dashed lines show the results for the efficient tide model.
Note that the only significant difference between those two models is in the long-term expected total fraction of mergers due to the larger probability for the
formation of tidally locked systems. In the short to medium term, the results are virtually identical. The black vertical line marks the age of the young stellar
population in the GC, determined to be 6 Myr by Lu et al. (2013). Note that the distributions of binaries and evaporated binaries of the two models begin to
diverge only for stellar populations older than that, with fewer evaporated binaries in the efficient tide case. Thus, the tidal model is not of dominant importance
in order to predict the fractions of mergers and binaries for the young stellar population. The different tidal strengths are mostly just influencing the formation
of tidally locked systems, which can become merger products at later times.

Figure 6. Merger distribution and Gaussian kernel density estimate (KDE)
of the mergers as a function of inclination and epsilon. Plotted in the left-
hand panel is the distribution of all systems (in grey) versus the distribution
of mergers (direct in black, radial in blue, tidal in red), and plotted in
the right-hand panel is the Gaussian KDE, or the smoothed density of
all mergers in inclination–epsilon space, assuming an intrinsic Gaussian
distribution. The colour bar shows the density, while the contours enclose
certain density levels (see labels). While we do not expect the intrinsic
distribution of mergers to be truly Gaussian, the KDE helps to highlight the
strong concentration of mergers towards 90◦ inclination and high epsilon
values due to direct mergers [for the definition of epsilon, see equation (1)].

underlying Gaussian distribution. It highlights the strong concen-
tration of mergers at high epsilon values and towards 90◦ inclination.

We note that the binary inclination with respect to the MBH is
sensitive to the VRR time-scale, which will alter the outer orbit
angular momentum orientation. This cannot really decrease our
merger rate as the direct mergers take place on much shorter time-
scales than the VRR effects. Furthermore, tidally locked systems are
decoupled from the tertiary and are thus insensitive to the outer orbit
orientation. Finally, the radial mergers may be marginally effected;
however, VRR will refill the EKL high inclination parameter space
and can thus re-trigger eccentricity excitations.

The binary orbital configuration around the MBH (referred to
here as the outer orbit) sets limits to the different outcomes of the
inner orbit, and thus a promising observable is the outer orbit’s pe-
riod distribution. As shown in Fig. 6, the merger outcome is very
sensitive to ϵ and thus to the eccentricity and the outer orbit sep-
aration a2. We note that the outer orbit separation from the MBH,
a2, does not change during the evolution, as a consequence of the
secular approximation. The outer orbit eccentricity does not change
because the outer orbit carries most of the angular momentum in the
system, and thus the changes on to e2 are insignificant compared to
the angular momentum variation of the inner orbit. The e2 distribu-
tion of all merged systems is shown in Fig. 7. G2-like candidates,
i.e. those binaries that merged in the last 6 Myr, are preferentially
on eccentric orbits, with a long tail down to e2 ∼ 0.1. As time goes
by, stellar evolution merger products become an important compo-
nent of the overall merger population and allow for smaller values
in the e2 distribution. However, highly eccentric outer orbits are

MNRAS 460, 3494–3504 (2016)
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their orbital analysis, they concluded that both sources could
have originated from the clockwise young stellar disk
(Paumard et al. 2006; Lu et al. 2009; Yelda et al. 2014).

However, the study we present here, which includes data
taken several years beyond the last data point used in Pfuhl
et al. (2015) (2014.6 versus 2010.5; true anomalies of 10.5°
and 8°.7, respectively), shows that despite the common orbital
plane, G1 and G2 have distinct Keplerian orbits with a
significant (>3σ) difference in their arguments of periapsis ∼3
times larger than the difference reported in Pfuhl et al. (2015).
This is demonstrated in Figure 7 showing both the data and the
best-fit orbits projected into the plane of the sky, as well as both
best-fit orbits projected into the average orbital plane.

Our findings do not firmly exclude the models proposed by
McCourt & Madigan (2016) and Madigan et al. (2017).
However, while both models might be able to accommodate
such a large change of the Keplerian orbit in the case of a
compact gas cloud, the drag force scenario and a resulting
common trajectory of G1 and G2 become increasingly unlikely
in the context of a central star and thus larger object masses, as
indicated by the compactness and brightness of both sources.
The masses derived in the following sections and in Witzel
et al. (2014) are 105–106 times larger than the originally
proposed 3 Earth masses. The interpretation in Pfuhl et al.
(2015) that G1 and G2 are two dense regions within the same
extended gas streamer that fills one trajectory around the black
hole and have an identical origin but are offset by ∼13 yr
therefore seems unlikely.

The orbital planes of G1 and G2 are very similar, and they
are fairly close to the plane defined by the clockwise disk
(Yelda et al. 2014, and see Figure10 of Pfuhl et al. 2015). G1
and G2 may have therefore originated the clockwise disk. We
note, however, that there are other G2-like sources that do not
lie on their common orbital plane (Sitarski et al. 2015).

5.2. Evolution of G1’s Dust Envelope

Independent of whether G1 and G2 are related by a gas
streamer, their physical natures are still not yet known. Recent
results (e.g., Witzel et al. 2014; Valencia-S. et al. 2015, in
contrast to Pfuhl et al. 2015) support the hypothesis that G2 has
a stellar component due to its periapsis passage survival. This
raises the question of whether there is similar evidence that G1
is stellar in nature.
In contrast to observations that G2 is unresolved at L′, for G1

we are able to measure its size in 2005, and we can therefore
put constraints on the optical depth, τ, of the dust envelope at
this point in time. Based on several parameters calculated in
Section 4.3 (Tβ=2=568 K, Tβ=0=426 K, rG1,2005=137 au),
we find that the optical depth of G1 is small in the epochs when
it is resolved, and we can therefore conclude that the origin of
the extended continuum emission is an optically thin medium
in 2005. As calculated in Section 3.2, the ambient radiation
field in the Galactic center is strong enough (with Lyα alone) to
externally heat this optically thin shell. The profile of G1 in the
epochs where it is extended is well constrained by a PSF
convolved with a 2D Gaussian (see Section 3.1.2) and shows
no evidence of two components (as could be modeled by a PSF
+ a 2D Gaussian). This indicates that we do not see a central,
optically thick point source in 2005.
From 2009 onward, G1 is unresolved at L′ and shows a

significantly lower, roughly constant flux density of ∼0.6 mJy.
Blackbody modeling of G1ʼs L′–Ms color yields a temperature
of 684 K, implying a blackbody radius of ∼1 au and a
luminosity of ∼4.5 L☉. This high luminosity and the fact that
the object becomes more compact with time point to a
substantially larger mass than 3 Earth masses. As indicated by
the evolutionary tracks of main-sequence stars, this mass can
be of the order of 1Me (Figure 12). However, the large derived
blackbody size for the unresolved G1 shows that it is not a

Figure 8. Left: comparison of G1ʼs orbital solution in this work and Pfuhl et al. (2015). Our Keplerian orbital fit is shown in red, while the orbital fit and data from
Pfuhl et al. (2015) are shown in blue. The black lines connect the observed point to the same point in time on the model orbit. There is an astrometric bias in 2009 and
2010 from confusion or a background dust emission feature that may skew the astrometry in those epochs. We do not use the astrometry from Pfuhl et al. (2015) due to
differing reference frames. Right: orbits of G1 and G2 (as described in Table 5) projected into their common average orbital plane (ΩG1=+2°. 5, ΩG2=−2.5°,
iG1=−2°, iG2=2°, ωG1=117°, ωG2=96°). It is evident that despite having similar orbital planes, the orbital trajectories are different. The solid (dashed) lines
show times when we have (have not) observed G1 and G2.
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Hoang, Naoz et al (2018,2022)

Breakup

Evolve to compact 
object 

merge 

Rose, Naoz et al (2020)



✷

✷

✷

✷

✷

✷

✷

✷

✷

✷

✷

✷

✷

✷

✷

Dense Environment 



Collisions in a Dense Environment 
BH - stellar collision 

Bondi 
radius∼ Δm

Sanaea 
Rose

Rose, Naoz, Sari, Linial 2022

For efficient accretion 



BH - stellar collision 

Sanaea 
Rose

For efficient accretion 
However, growth is efficient for steeper profiles, such
as       = 1.75.

Rose+ 2022

Bondi 
radius∼ Δm

ρ ∼ r−α

α = 1.75

Collisions in a Dense Environment 

Rose, Naoz, Sari, Linial 2022



Some of the intermediate mass black holes merge with
the supermassive black hole through gravitational waves.

Rose+ 2022

BH - stellar collision 

Sanaea 
Rose

For efficient accretion 

Bondi 
radius∼ Δm

ρ ∼ r−α

α = 1.75

GW mergers with the SMBH  
EMRIs and IMRIs

Collisions in a Dense Environment 

Rose, Naoz, Sari, Linial 2022



BH - stellar collision 

Sanaea 
Rose

For efficient accretion 

Relaxation
+

Collisions in a Dense Environment 

Rose, Naoz, Sari, Linial 2022



We can form intermediate-mass black holes and black
holes in the pair-instability mass gap.

Rose+ 2022

BH - stellar collision 

Sanaea 
Rose

For efficient accretion 

ρ ∼ r−α

α = 1.75

GW mergers with the SMBH  
EMRIs and IMRIs

Relaxation
+

Collisions in a Dense Environment 

Rose, Naoz, Sari, Linial 2022



BH - stellar collision 

Sanaea 
Rose

+ Wind accretion 

ρ ∼ r−α

Relaxation
+

Collisions in a Dense Environment The final BH masses for a few simulations:

Rose+ 2022

Formation of black holes in the pair-
instability mass gap and IMBHs 

Rose, Naoz, Sari, Linial 2022

e.g. O’Leary et al (2009)  
Gondan et al (2018)

Γ ~1.5 Gpc−3  yr−1



Mergers and Collisions at the Heart 
of Galaxies

Merging stars

Merging compact objects

Merging a compact 
object with a star


