Zhu & Stone 2014 simulation, rendered for "Incoming!" California Academy of Sciences

Protoplanetary Disks and Planets: Theory

Zhaohuan Zhu (U. of Nevada, Las Vegas)

UNSOLVED PROBLEMS in Astrophysics and Cosmology

July 2, 2018

Now we are really good at finding mature planets

Two decades after 51 Pegasi b, we have 3800 exoplanets 1. Radial velocity:

3. Microlensing:

2. Transit:

4. Direct Imaging:

Credit: Marois

Planet statistics is robustly constrained: <1 AU

Most planets are $<4 R_{\oplus}$

0.6 planets at 1-4 R_{\oplus} per GK dwarf

2.5 \pm 0.2 planets at 1-4 R \oplus per M dwarf

Within ~ 10 AU

Giant planets: 0.1 M_J<M_p sin i 1<P/days<10⁴

M dwarf: f=15%

FGK stars: f=31%

Clanton & Gaudi 2014

Beyond 10 AU

Direct imaging

Bowler & Nielsen 2018

Why do we care?

- Is our solar system special ?
- How do planets form ?

How do protoplanetary disks evolve to such diverse exoplanets?

Protoplanetary disks => diverse exoplanets

• Compare protoplanetary disks with exoplanets

• Look for young planets

Protoplanetary disks VS exoplanets

Ansdell et al. 2016

The mean solid mass in Kepler planets ~ 20 earth mass within 1 AU Dong & Zhu 2013, Chiang & Laughlin 2013

There appears to be a **mass budget problem**: Najita & Kenyon 2014

Mass budget problem

Protoplanetary disks => diverse exoplanets

• Compare protoplanetary disks with exoplanets

• Look for young planets

Direct Methods: Indirect Methods: Dust features: Gaps, Spirals, Blobs Gas kinematics

Direct Detection

LkCa 15 b Kraus+ 2011

Indirect Detection using disk features

Planet-disk interaction

Planet-disk interaction

Indirect Detection diverse disk features: Dust

Dust particles

μm

mm

km Zhaohuan Zhu

Diverse disk features

Benisty+ 2015

Pérez+ 2016

Observations

Simulations+MCRT: 3x0.2 MJ planets

Dong, Zhu et al. 2015a, Dipierro et al. 2016

Dust: Spirals

Fitting the pitch angle suggests a too hot disk

MWC 758

At 50 AU, T~300 K

Benisty et al. 2015

Spirals: Grand design

M51

How to test the theory?

1. Use binaries as a test

Wagner et al. 2018

How to test the theory?

2. Spiral Patterns over Time

Ren + 2018

Dust: lopsided structure

Zhu & Stone 2014 See also Lyra & Lin 2013, Barge et al. 2017

Gas kinematics: horseshoe around the planet

Summary

- Planet statistics is being nailed down
- Compare protoplanetary disks with exoplanets Mass budget problem More comparisons to be made
- Look for young planets

 Direct Methods:
 Indirect Methods:
 Dust features: Gaps, Spirals, Blobs Gas kinematics

Are we sure that disk features are due to planets? How to break the degeneracy?

Dong+ 2015, Bae+ 2016, Isella+ 2016 Meru+ 2017, Dipierro+ 2018, Fedele+ 2018, Teague+ 2018, Pinte+ 2018

Avenhaus et al. 2018

Using CO to estimate the gas mass

Most disks have mass less than M_J

There appears to be a mass budget problem: Najita & Kenyon 2014 The mean solid mass in Kepler planets ~ 10 earth mass within 1 AU

Dong & Zhu 2013, Chiang & Laughlin 2013

10% FGK star have Jupiter or super-Jupiter

Ansdell et al. 2016

Earth analog fraction, η_\oplus

Extrapolated!!!! 1-2 R_{\oplus} , 300-700 days

Burke et al. 2015