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Unsolved questions related to this talk

 When and how do galactic disks emerge?
e Exact yields of CC SN, SN la and NS-NS events?

* Role of Globular Clusters in high-z galaxy formation?



A brief history of the Galaxy

11 Gyr ago: high-alpha disk is actively forming

e 7-11 Gyr ago: merger with a relatively massive dwarf
galaxy, the GS/E progenitor

« MW-GS/E interaction triggers a response - heating of
the pre-existing high-alpha disk and formation of the

Splash, metal-rich in-situ halo component



Searching for a chemical fingerprint
of early star formation

core-collapse SN\

supernovae supernovae

alpha elements

metal-free stars Solar metallicity
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Al and Na are special

metallicity dependence of yields
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Star-formation and chemical history

stellar mass
and/or metallicity

| A b .
high 9 Galay,,
Note to self:
Stellar mass and metallicity curves
look alike - could use metallicity
as a crude proxy for time
time
low

now high redshift



Al/Fe balance

stellar mass

and/or metallicity SNe la kick off Fe production
high
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[Al/Fe]

Al/Fe balance

In-situ
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Al/Fe balance in Galactic dwarfs

APOGEE DR17 observations
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[Al/Fe]

Selecting in-situ population

In-situ

0.4}

0.2}

0.0}

0.2}
0.4}

06! 0. '
20 15 -1.0 -05 00 05 20 15 -1.0 -05 00 05
[Fe/H] [Fe/H]




Kinematic history of the Galaxy

azimuthal velocity
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Azimuthal velocity distribution

azimuthal velocity R
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Azimuthal velocity distribution
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Chemistry



[Al/Fe]

Chemical trends with [Fe/H]
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abundance ratio spread

Chemical trends with [Fe/H]
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Previously, similarly large spreads in
abundance ratios of these elements were
detected only in the Globular Clusters (GCs)

Abundance spreads in Galactic GCs also
show a very similar dependence on [Fe/H]

GC abundance spreads are a function of GC
mass with the largest spreads observed in
the most massive clusters



Aside 1/2

 Recent additional pieces of evidence for Aurora

BIRTH OF THE GALACTIC DISK REVEALED BY THE H3 SURVEY
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increasingly cold and disk-like at higher metallicities. The ages of the in-sit
old (= 13 Gyr) at [Fe/H] < —1.3, and span a wider range (8 — 12 Gyr) at
the chemistry with a simple chemical evolution model suggests that the nc
significant increase in star formation efficiency, which began ~ 13 Gyr ago.

! Maz-Planck-Institut fiir Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany
2 Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138, USA
3 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
4 Department of Astronomy and Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210, USA
5 Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10008, USA
6 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
TMIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave., Cambridge, MA 02189, USA
8 National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, 100012, China

ABSTRACT

which the first = 1 Gyr of the Galaxy was characterized by a “simmering f
efficiency was low and the kinematics had substantial disorder with some net
a dramatic transformation to a “boiling phase”, in which the star formation
the kinematics became disk-like, and the number of stars formed increased
mation as the birth of the Galactic disk at z =~ 4. The physical origin of this "
not seem to be reproduced in current galaxy formation models.

L — —

Massive disk galaxies like our Milky Way should host an ancient, metal-poor, and centrally concen-
trated stellar population. This population reflects the star formation and enrichment in the few most
massive progenitor components that coalesced at high redshift to form the proto- Galazy. While metal-
poor stars are known to reside in the inner few kiloparsecs of our Galaxy, current data do not yet provide
a comprehensive picture of such a metal-poor “heart” of the Milky Way. We use information from
Gaia DR3, especially the XP spectra, to construct a sample of 2 million bright (Ggp < 15.5 mag) giant
stars within 30° of the Galactic Center with robust [M/H] estimates, §[M/H] < 0.1. For most sample
members we can calculate orbits based on Gaia RVS velocities and astrometry. This sample reveals an
extensive, ancient, and metal-poor population that includes ~ 18,000 stars with —2.7 < [M/H] < —1.5,
representing a stellar mass of > 5 x 10" M. The spatial distribution of these [M/H] < —1.5 stars
has a Gaussian extent of only ory. ~ 2.7 kpc around the Galactic center, with most of these or-
bits being confined to the inner Galaxy. At high orbital eccentricities, there is clear evidence for
accreted halo stars in their pericentral orbit phase. Stars with [M/H] < —2 show no net rotation,
whereas those with [M/H] ~ —1 are rotation dominated. Most of the tightly bound stars show [a/Fe]-
enhancement and [Al/Fe|]-[Mn/Fe] abundance patterns expected for an origin in the more massive
portions of the proto-Galaxy. These central, metal-poor stars most likely predate the oldest part of
the disk (7age ~ 12.5 Gyrs), which implies that they formed at z 2 5, forging the proto-Milky Way.
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Aside 2/2

* Evidence against the so-called "metal-weak disk”

* Evidence against Kraken/Heracles/Koala - an ancient
massive merger



Conclusions 1/2

* Pure in-situ sample thanks to precise chemistry from

APOGEE (combine with unprecedented kinematics
from Gaia)

* At metallicities [Fe/H]<-1.3 the Galaxy is kinematically

hot, with approximately isotropic velocity ellipsoid and
modest net spin ( )

 Median azimuthal velocity increases sharply with
metallicity (Spin-up) and by [Fe/H]=-0.9, the Milky Way
settles into a coherent, rotating disk



Conclusions 2/2

* |n the pre-disk state the Galaxy exhibits a
large scatter in all elemental abundances

* This is likely caused by the increased stochasticity in
metallicity at early times driven by strong variations in
gas accretion and gas outflow rates and associated
burstiness of star formation

 Additional anomalous scatter in Al, Si, N and O similar
to that observed in globular clusters -

massive stellar clumps played an important role in the
young Milky Way



Future Prospects

e Studying stars (spatial and kinematics distributions) in
Aurora and during Spin-up will shed light on the disk
emergence in relatively low-mass DM halos

e Aurora stars probe faster early SF timescales and
provide a new channel to disentangle CCSN and NS-
NS yields

 Through chemical abundance correlations unigue to
GC enrichment patterns reconstruct the fraction of
stellar mass in clusters at high redshift



Thanks!



