Extreme Mass Ratio Inspirals triggered by Massive Black Hole Binaries: from Relativistic Dynamics to Cosmological Rates

EPTA

Matteo Bonetti - Università degli studi di Milano-Bicocca

Unsolved problems in astrophysics

Unsolved problem: Different formation of Extreme Mass Ratio Inspirals

EPTA

Matteo Bonetti - Università degli studi di Milano-Bicocca

Unsolved problems in astrophysics

Unsolved problem: Different formation of Extreme Mass Ratio Inspirals

EPTA

Extreme Mass Ratio Inspirals triggered by Massive Black Hole Binaries: from Relativistic Dynamics to Cosmological Rates

CONSORTIUM

Matteo Bonetti - Università degli studi di Milano-Bicocca

Unsolved problems in astrophysics

Giovanni Mazzolari

Extreme Mass Ratio Inspirals triggered by Massive Black Hole Binaries: from Relativistic Dynamics to Cosmological Rates.

Giovanni Mazzolari,^{1,2,3*} Matteo Bonetti,^{4,5,6}† Alberto Sesana^{4,5,6}, Riccardo M. Colombo⁴, Massimo Dotti^{4,5,6}, Giuseppe Lodato³, David Izquierdo-Villalba.^{4,5}

²INAF - Astrophysics and Space Science Observatory of Bologna, via Gobetti 93/3, I-40129 Bologna, Italy
³ Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via G. Celoria 16, I-20133 Milano, Italy
⁴Dipartimento di Fisica "G. Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
⁵INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy

⁶INAF - Osservatorio Astronomico di Brera, via Brera 20, 20121 Milano, Italy

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Riccardo Colombo

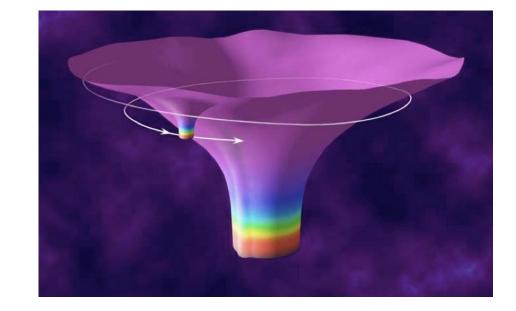
Extreme mass ratio inspirals (EMRIs) are compact binary systems characterized by a mass-ratio q = m/M in the range $10^{-9}-10^{-4}$ and represent primary gravitational wave (GW) sources for the forthcoming Laser Interferometer Space Antenna (LISA). While their standard formation channel involves relaxation processes deflecting compact objects on very low angular momentum orbits around the central massive black hole, a number of alternative formation channels has been proposed, including binary tidal break-up, migration in accretion disks and secular and chaotic dynamics around a massive black hole binary (MBHB). In this work, we take an extensive closer look at this latter scenario, investigating how EMRIs can be triggered by a MBHBs, formed in the aftermath of galaxy mergers. By employing a suite of relativistic three-body simulations, we evaluate the efficiency of EMRI formation for different parameters of the MBHB, assessing the importance of both secular and chaotic dynamics. By modelling the distribution of compact objects in galaxy nuclei, we estimate the resulting EMRI formation rate, finding that EMRI are produced in a sharp burst, with peak rates that are 10-100 times higher than the standard two-body relaxation channel, lasting for $10^{6}-10^{8}$ years. By coupling our results with an estimate of the cosmic MBHB merger rate, we finally forecast that LISA could observe O(10) EMRIs per year formed by this channel.

Key words: black hole physics - gravitational waves - celestial mechanics - methods: numerical

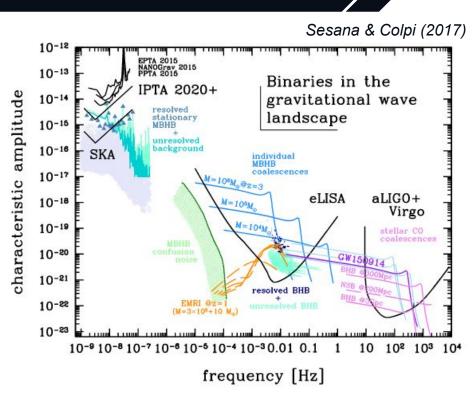
Alberto Sesana

Matteo Bonetti

arXiv:2204.05343


What are EMRIs?

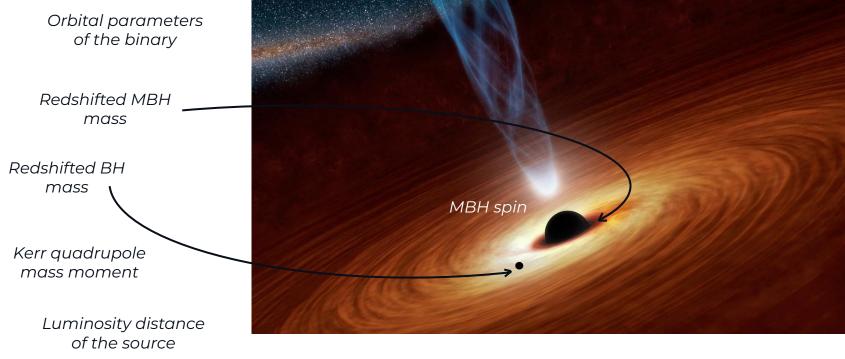
EMRIs features:


Binary systems with mass ratio between 10⁻⁹ and 10⁻⁴

Formed by compact objects (COs)

A classical EMRI example is a binary system formed by **massive BH** + **stellar mass BH**

What are EMRIs?

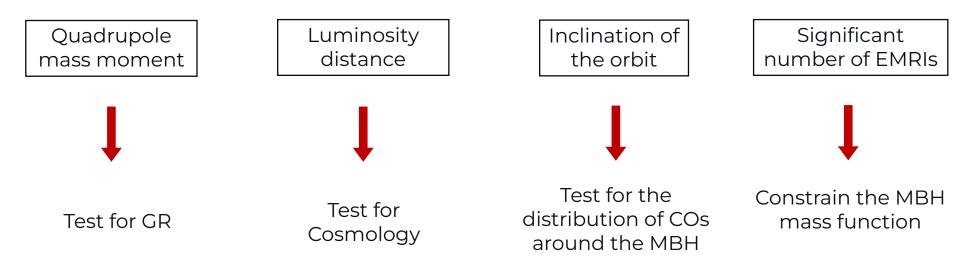

EMRIs will be primary GW sources for LISA science case

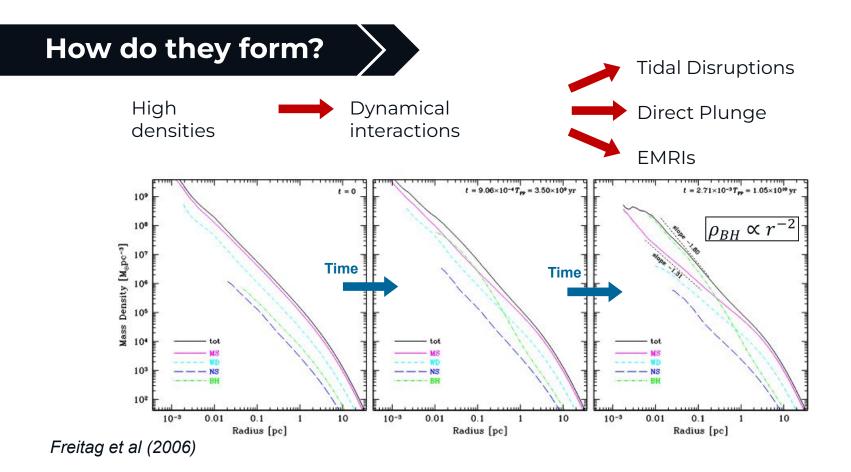
$$f_{GW,max} = 4 \times 10^{-3} \left(\frac{M}{10^6 M_{\odot}}\right)^{-1} Hz$$

$$h = \sqrt{\frac{32}{5} \frac{(G M_c)^{5/3}}{c^4 d_L}} (\pi f_{GW})^{2/3}$$

Why EMRIs are important?

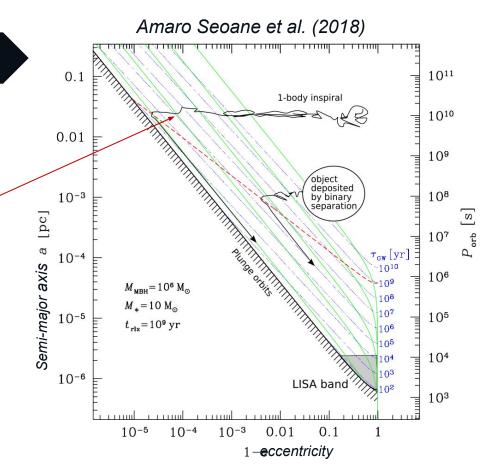
The extreme mass-ratio makes the GW emission very inefficient




 $10^4 - 10^5$ cycles

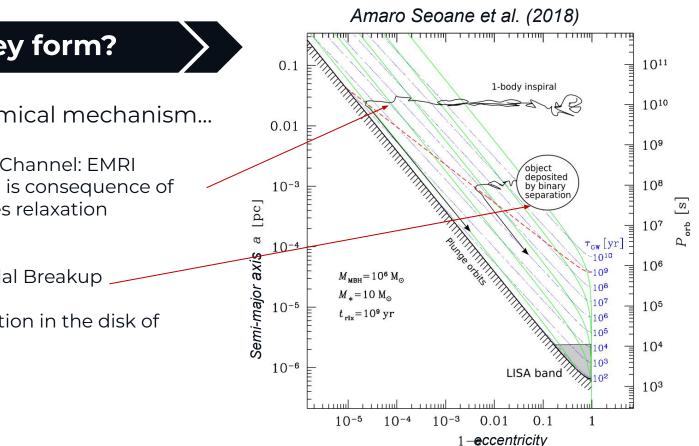
Extremely precise measurements

Why EMRIs are important?



How do they form?

Possible dynamical mechanism...


- Standard Channel: EMRI formation is consequence of two bodies relaxation
- Binary Tidal Breakup
- BH migration in the disk of AGNs

How do they form?

Possible dynamical mechanism... 0.01

- Standard Channel: EMRI formation is consequence of two bodies relaxation
- **Binary Tidal Breakup** •
- BH migration in the disk of AGNs

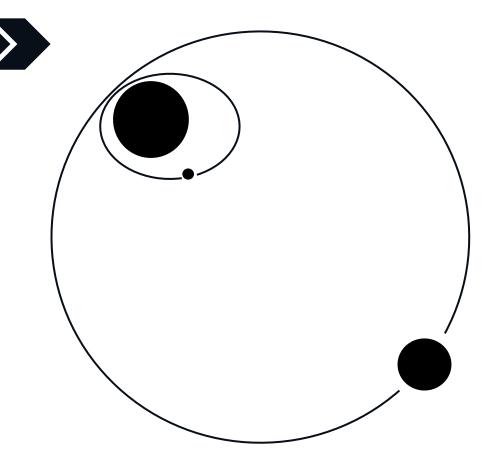
How do they form?

... another possibility

EMRI formation in a Massive Black Hole Binary (MBHB)

Investigated by Bode & Wegg +14 (with a number of simplifying assumptions) and recently by Naoz+22 (different setup, see next)

We would like to simulate a system featuring:


- Primary MBH
- A cusp of stellar-mass CO around it
- A secondary MBH

We choose the semi-analytical way, i.e. we pick one CO at a time and simulate a series of three-body systems

(EMRI identified when GW timescale **smaller** than relaxation timescale)

Simulations set-up:

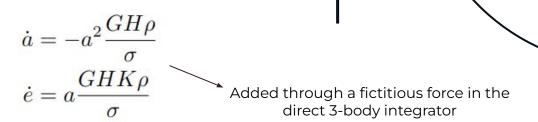
 Inner and outer binary : hierarchical triplet

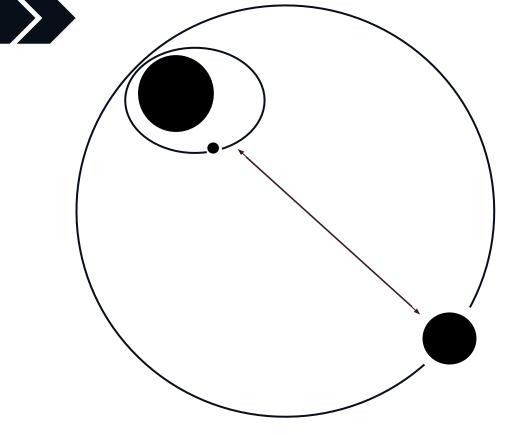
Simulations set-up:

- Inner and outer b
 hierarchical triple
- Post-Newtonian Evolution

Newtonian
$$H_0 = \frac{1}{2} \sum_{\alpha} \frac{|\vec{p}_{\alpha}|^2}{m_{\alpha}} - \frac{G}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{m_{\alpha} m_{\beta}}{r_{\alpha\beta}}$$

$$\begin{aligned} \mathbf{1PN} \\ H_1 &= -\frac{1}{8} \sum_{\alpha} m_{\alpha} \left(\frac{|\vec{p}_{\alpha}|^2}{m_{\alpha}^2} \right)^2 \\ &- \frac{G}{4} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{1}{r_{\alpha\beta}} \Big[6 \frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^2 - 7 \vec{p}_{\alpha} \cdot \vec{p}_{\beta} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha}) (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) \Big] \\ &+ \frac{G^2}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{m_{\alpha} m_{\beta} m_{\gamma}}{r_{\alpha\beta} r_{\alpha\gamma}} \end{aligned}$$

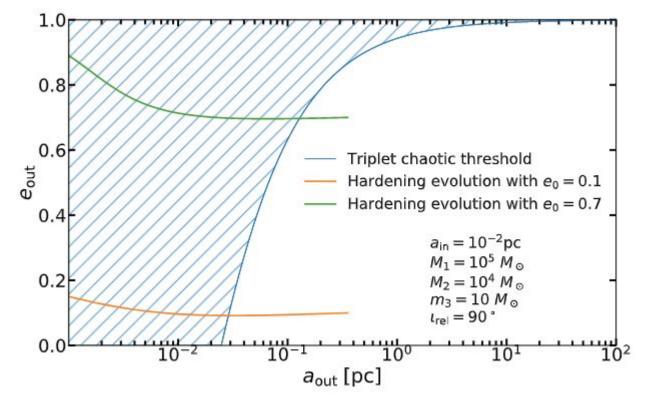

2.5PN $H_{2.5} = \frac{G}{45} \dot{\chi}_{(4)ij}(\vec{x}_{\alpha'}, \vec{p}_{\alpha'}; t) \chi_{(4)ij}(\vec{x}_{\alpha}, \vec{p}_{\alpha})$


We integrate the time evolution following the inner binary orbital timescale

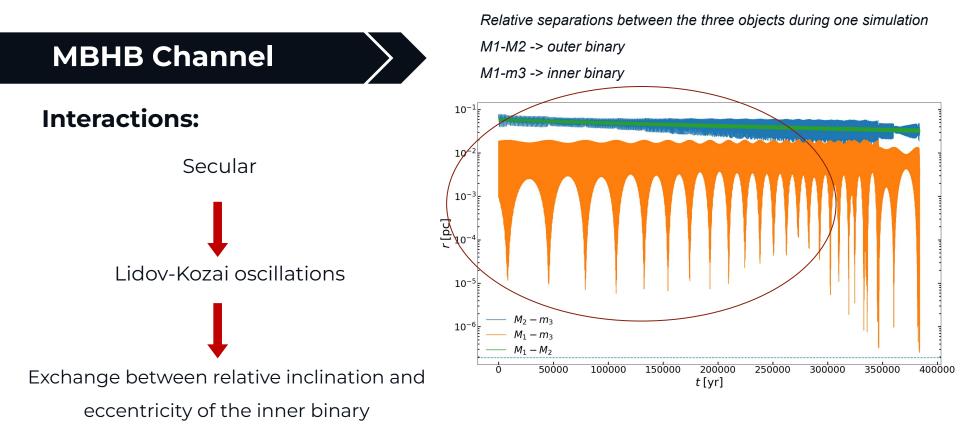
$$\begin{split} H_{2} &= \frac{1}{16} \sum_{\alpha} m_{\alpha} \left(\frac{|\vec{p}_{\alpha}|^{2}}{m_{\alpha}^{2}} \right)^{3} + \frac{G}{16} \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{(m_{\alpha}m_{\beta})^{-1}}{r_{\alpha}\beta} \left[10 \left(\frac{m_{\beta}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} \right)^{2} - 11 |\vec{p}_{\alpha}|^{2} |\vec{p}_{\beta}|^{2} - 2(\vec{p}_{\alpha} \cdot \vec{p}_{\beta})^{2} \right] \\ &+ 10 |\vec{p}_{\alpha}|^{2} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} - 12(\vec{p}_{\alpha} \cdot \vec{p}_{\beta})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) - 3(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})^{2} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} \right] \\ &+ \frac{G^{2}}{S} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta}r_{\alpha\gamma}} \left[18 \frac{m_{\beta}m_{\gamma}}{m_{\alpha}} |\vec{p}_{\alpha}|^{2} + 14 \frac{m_{\alpha}m_{\gamma}}{m_{\beta}} |\vec{p}_{\beta}|^{2} - 2 \frac{m_{\alpha}m_{\gamma}}{m_{\beta}} (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})^{2} \right] \\ &+ 50m_{\gamma}(\vec{p}_{\alpha} \cdot \vec{p}_{\beta}) + 17m_{\alpha}(\vec{p}_{\beta} \cdot \vec{p}_{\gamma}) - 14m_{\gamma}(\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta}) \\ &+ 14m_{\alpha}(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) + m_{\alpha}(\vec{n}_{\alpha\beta} \cdot \vec{n}_{\alpha\gamma})(\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{G^{2}}{S} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha} \frac{1}{r_{\alpha\beta}^{2}} \left[2m_{\beta}(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})(\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) + 2m_{\beta}(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})(\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}}{r_{\alpha\beta}^{2}} \left[m_{\alpha\beta}(\vec{p}_{\alpha\beta} + \vec{n}_{\alpha\gamma})(\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma})^{2} - 14(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\beta})(\vec{n}_{\alpha\gamma} \cdot \vec{p}_{\gamma})) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{(m_{\alpha\beta}^{1} + m_{\alpha\gamma})(n_{\alpha\beta}^{2} + n_{\gamma\beta\beta}^{2})}{m_{\alpha}(p_{\alpha\beta} + r_{\beta\gamma} + r_{\gamma\gamma})^{2}} \left[8m_{\beta}(p_{\alpha}p_{\alpha}p_{\gamma}) - 16m_{\beta}(p_{\alpha\beta}p_{\gamma}) \right] \\ &+ 3m_{\gamma}(p_{\alpha}p_{\beta}) + 4 \frac{m_{\alpha}m_{\beta}}{m_{\gamma}} (p_{\gamma}p_{\gamma}) + \frac{m_{\beta}m_{\gamma}}{m_{\alpha}} (p_{\alpha\beta}p_{\alpha}) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}m_{\beta}m_{\gamma}}{(r_{\alpha\beta} + r_{\beta\gamma} + r_{\gamma\alpha})r_{\alpha\beta}} \left[8\frac{\vec{p}_{\alpha} \cdot \vec{p}_{\gamma} - (\vec{n}_{\alpha\beta} \cdot \vec{p}_{\alpha})(\vec{n}_{\alpha\beta} \cdot \vec{p}_{\gamma}) \right] \\ &+ \frac{G^{2}}{2} \sum_{\alpha} \sum_{\beta \neq \alpha} \sum_{\gamma \neq \alpha,\beta} \frac{m_{\alpha}m_{\beta}m_{\gamma}}{(r_{\alpha\beta} + r_{\beta\gamma} + r_{\gamma\alpha})r_{\alpha\beta}} \right] - \frac{m_{\alpha}m_{\gamma}}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} - \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}}{m_{\alpha}} \frac{m_{\alpha}m_{\beta}}{m_{\alpha}}} \frac{m_{\alpha}m_{\beta}}}{m_{\alpha}}$$

Simulations set-up:

- Inner and outer binary : hierarchical triplet
- Post-Newtonian Evolution
- Stellar potential
- Hardening



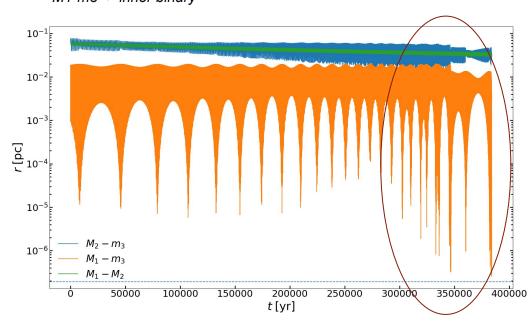
Stellar hardening


$$\dot{a} = -a^2 \frac{GH\rho}{\sigma}$$
$$\dot{e} = a \frac{GHK\rho}{\sigma}$$

Stellar hardening brings the secondary MBH closer to the inner binary.

The triplet's doom is the dynamical instability, a regime where secular theory cannot be employed

See Naoz+22 for a different approach considering the secular formalism


GR precession generally damp the process

Interactions:

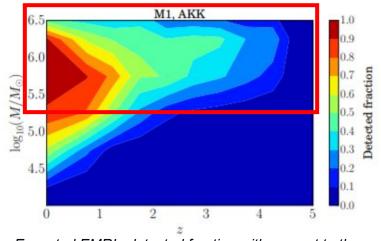
Chaotic Hierarchy is lost

Strong encounters

Relative separations between the three objects during one simulation M1-M2 -> outer binary M1-m3 -> inner binary

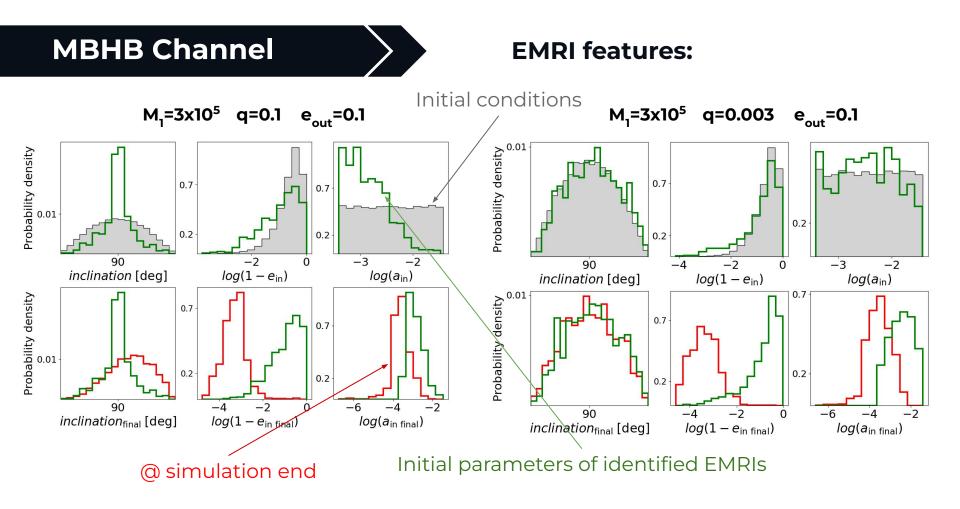
Parameter space:

Mass of the primary MBH M_1 :


 $3 ext{x} 10^5$, 10^6 , $3 ext{x} 10^6 \, M_{\odot}$

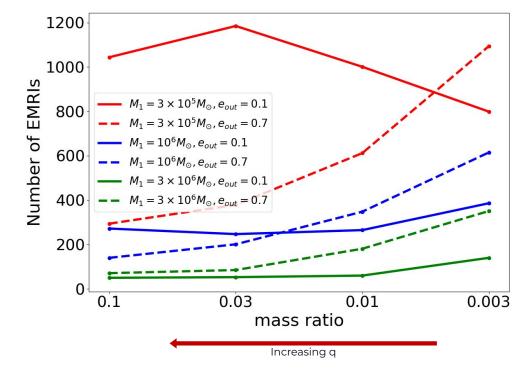
MBHs mass ratio $q = M_2/M_1$: 0.003, 0.01, 0.03, 0.1

MBHB eccentricity *e*_{out}:


0.1 and 0.7

Expected EMRIs detected fraction with respect to the mass of the primary MBH and the redshift

Babak, Gair & Sesana (2017)


Number of EMRIs:

• Low q, high MBHB eccentricity

Chaotic Interactions

• High q, low MBHB eccentricity

Secular Interactions

More EMRIs as q decreases

EMRIs formation rate for fixed MBHB

 $\sim 10^{-6} - 10^{-5} yr^{-1}$

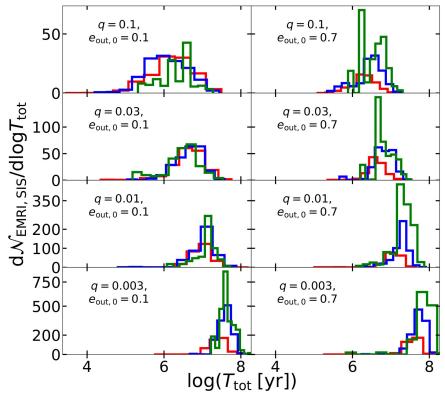
10-100 times larger

than the standard two-body relaxation

channel!

				-	
$\begin{array}{c c} M_1 = 3 \times 10^5 M_{\odot} \\ q & e_{\text{out},0} \end{array}$		N _{EMRI,SIS}	$\langle T_{\rm tot} \rangle$ [yr]	Rates [yr ⁻¹]	
0.1	0.1	43.7	5.5×10^{6}	2×10^{-5}	
	0.7	11.4	3.7×10^{6}	5×10^{-6}	
0.03	0.1	60.7	1.1×10^{7}	10 ⁻⁵	
	0.7	23.3	7.7×10^{7}	5×10^{-6}	
0.01	0.1	82.3	1.6×10^{7}	8×10^{-6}	
	0.7	45.0	1.7×10^{7}	4×10^{-6}	
0.003	0.1	100.2	3.9×10^{7}	4×10^{-6}	
0.005	0.7	93.2	4.4×10^7	2×10^{-6}	
$M_1 = 10^6 M_{\odot}$		NEMRLSIS	$\langle T_{\rm tot} \rangle$ [yr]	Rates [yr ⁻¹]	
q	eout,0	PEMRI,SIS	\rtot/ [J1]		
0.1	0.1	45.6	4.3×10^{6}	2×10^{-5}	
0.1	0.7	22.6	5.2×10^{6}	6×10^{-6}	
0.03	0.1	58.9	8.8×10^{6}	10 ⁻⁵	
0.05	0.7	41.5	1.0×10^{7}	6×10^{-6}	
0.01	0.1	127.9	1.8×10^{7}	10 ⁻⁵	
0.01	0.7	88.8	2.5×10^{7}	4×10^{-6}	
0.003	0.1	222.5	5.7×10^{7}	5×10^{-6}	
0.005	0.7	218.2	6.6×10^{7}	4×10^{-6}	
$M_1 = 3 \times 10^6 M_{\odot}$		N _{EMRI,SIS}	$\langle T_{\rm tot} \rangle$ [yr]	Rates [yr ⁻¹]	
q	eout,0				
0.1	0.1	25.1	4.3×10^{6}	9×10^{-6}	
	0.7	34.9	6.4×10^{6}	8 × 10 ⁻⁶	
0.03	0.1	59.9	8.9×10^{6}	10 ⁻⁵	
	0.7	54.0	1.2×10^{7}	7×10^{-6}	
0.01	0.1	97.0	2.1×10^{7}	7×10^{-6}	
5.0.	0.7	218.4	3.1×10^{7}	10 ⁻⁵	
			7	(
0.003	0.1	274.9	7.2×10^{7}	6×10^{-6} 5×10^{-6}	

EMRIs formation rate for fixed MBHB


 $\sim 10^{-6} - 10^{-5} yr^{-1}$

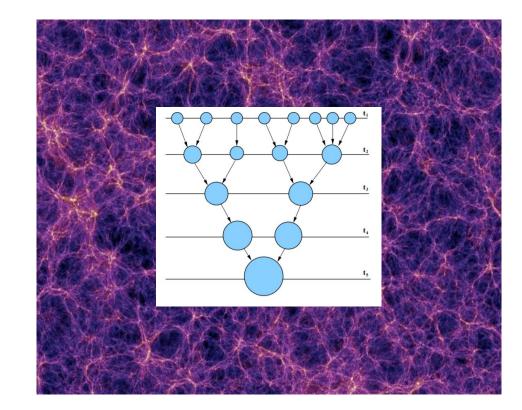
10-100 times larger

than the standard two-body relaxation

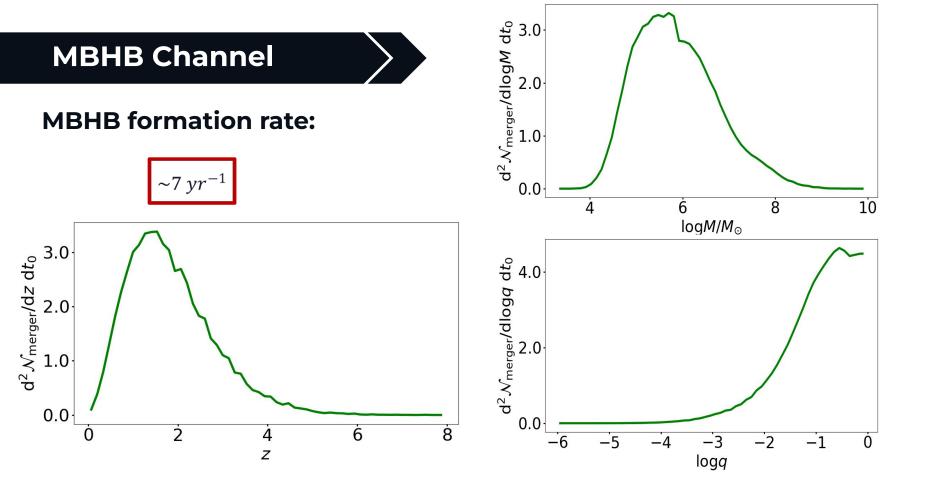
channel!

In this channel we have an EMRIs **formation burst**!

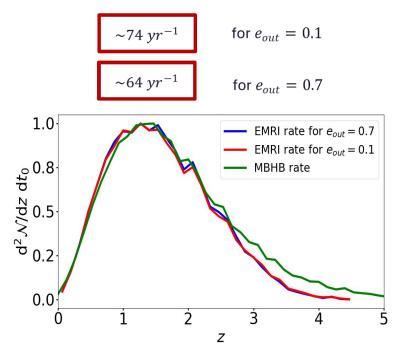
Time distribution of EMRIs formation. The three colors refer to the different values of M_1 : $M_1 = 3 \times 10^5 M_1 = 10^6 M_1 = 3 \times 10^6$

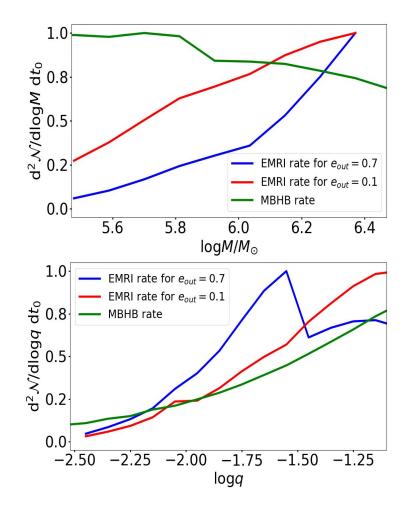

Smaller q take longer

Cosmological EMRIs Formation Rate

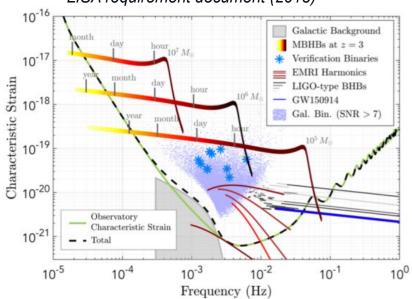

MBHB Formation Rate

Semi Analytical Cosmological model:

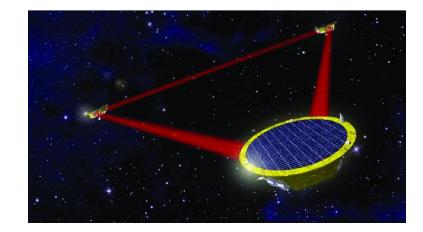

L-Galaxies

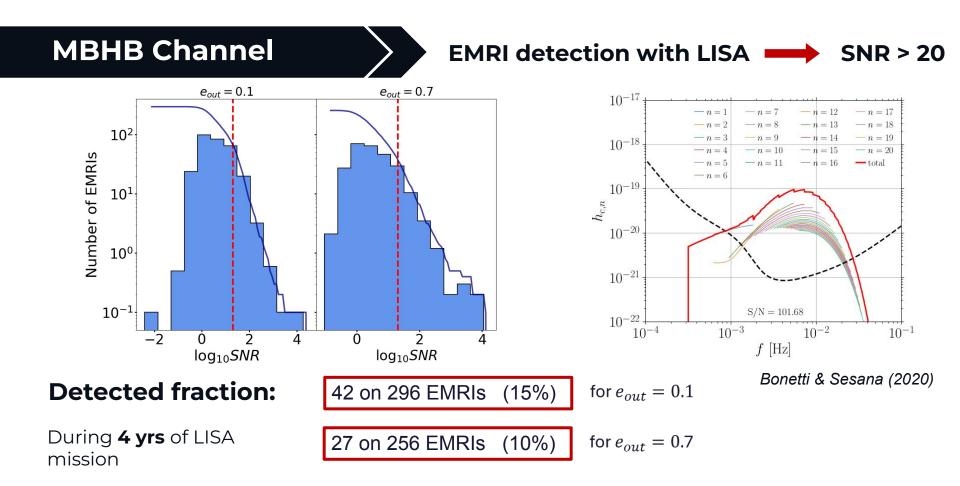


Note: No galactic delays in this version! MBHB merger rate could be slightly different



Cosmological EMRIs formation rate:


LISA

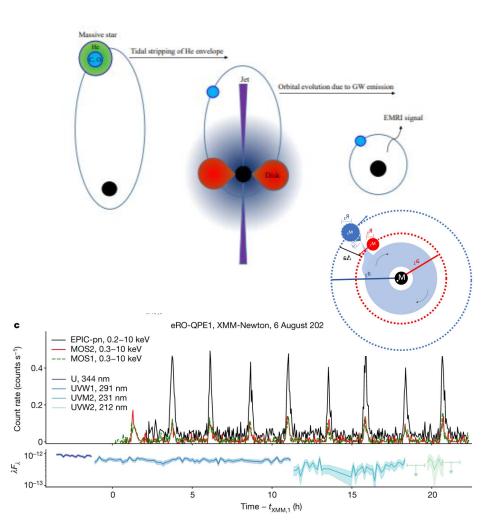


LISA requirement document (2018)

GW sources in the LISA band:

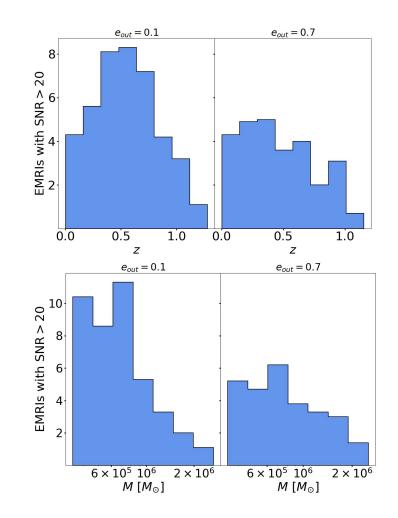
- MBHB ($10^4 < M_{MBH}/M_{\odot} < 10^7$) coalescence out to z>20
- IMBHB ($10^2 < M_{IMBH}/M_{\odot} < 10^4$) coalescence out to z > 10
- EMRIs out to $z \sim 2 3$
- Early steages of COs binaries evolution

Conclusions and Future Perspectives


- The formation rate from the single MBHB is 10-100 greater with respect to the standard channel
- There is an EMRIs formation burst
- The MBHB channel is not negligible (10% of all detectable the EMRIs)

- Implementation of the code also with spinning MBHs and stochastic kicks
- Introduce different stellar potential
- Wider parameter space
- Use the results of a SAM implemented also with the MBHB dynamics
- Investigate any distinctive properties of EMRIs from this MBHB channel (high eccentricity? preferred inclination? perturbation in the GW waveform?....)

EM Counterpart?


Quasi-Periodic Eruptions (QPE, Miniutti+19, Giustini+20, Arcodia+21,22)

- Tidal stripping of the He envelope of a massive star (Wang+19)
- WDs on high ecc orbit filling up their Roche lobes and feeding the MBHs during their pericenter passages (King20, Chen+22, King22)
- Main sequence star undergoing stable or unstable mass transfer (Krolik+22, Linian+22)
- Multiple EMRIs interacting among them (Metzger+22)

On average we can expect around ~10 detections per yr from this channel, with most of them concentrated at smaller primary masses

LISA sensitivity selects low primary masses

BH number per semi-major axis interval:

$$\frac{dN_{\text{BH,SIS}}}{da} = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\rho_{\text{BH}}(a)}{m_{\text{BH}}} a^{2} \sin \theta d\theta d\phi = \frac{2\sigma^{2}}{m_{\text{BH}}G},$$
If we now divide the variability range of the BH's semi-major axis
in 20 log bins equally spaced, with separations x_{j}, x_{j+1} , the number
of BHs in the *j*-th bin will be:
$$N_{\text{BH,SIS}}(j) = \frac{2\sigma^{2}}{m_{\text{BH}}G} (10^{x_{j+1}} - 10^{x_{j}}).$$
Using the following proportion:
$$N_{\text{EMRI,SIS}}(j) : N_{\text{BH,SIS}}(j) = N_{\text{EMRI,sim}}(j) : N_{\text{BH,sim}}$$
and defining the weights:
$$w_{j} = \frac{N_{\text{BH,SIS}}(j)}{N_{\text{BH,sim}}},$$

we finally obtained the expected number of EMRIs in a SIS-like cusp starting from those detected in simulations:

$$\mathcal{N}_{\text{EMRIS,SIS}} = \sum_{j} N_{\text{EMRI,sim}}(j) w_j.$$

Equation summary

Relaxation time

$$t_{\rm rlx} = 1.2 \times 10^{11} \left(\frac{\sigma}{100 \rm km s^{-1}}\right)^{7.47} \rm yr$$

Segregation Time

 $t_{\rm sgr} = (0.1 - 0.25) t_{\rm rlx}$

Condition for EMRI identification

 $T_{\text{GW}}(a, e) \leq (1 - e)t_{\text{rlx}}$

Evolution with GW emission

$$\begin{cases} \frac{de}{dt} = -\frac{304}{15} \frac{G^3 \mu M^2}{c^5 a^4 (1 - e^2)^{-5/2}} \left(e + \frac{121}{304} e^3 \right) \\ \frac{da}{dt} = -\frac{64}{5} \frac{G^3 \mu M^2}{c^5 a^3} F(e) \end{cases}$$

LK oscillations

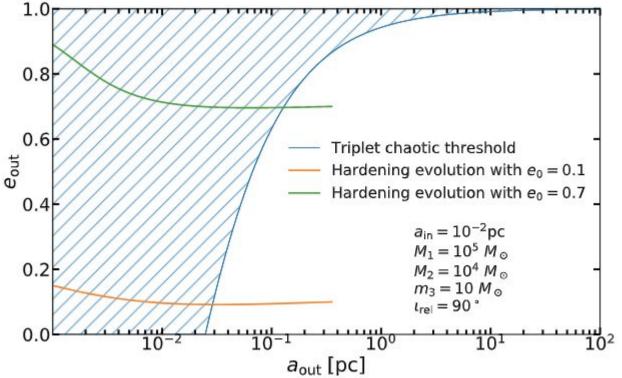
$$\sqrt{1-e_{\rm in}^2}\cos(\iota_{\rm rel})$$

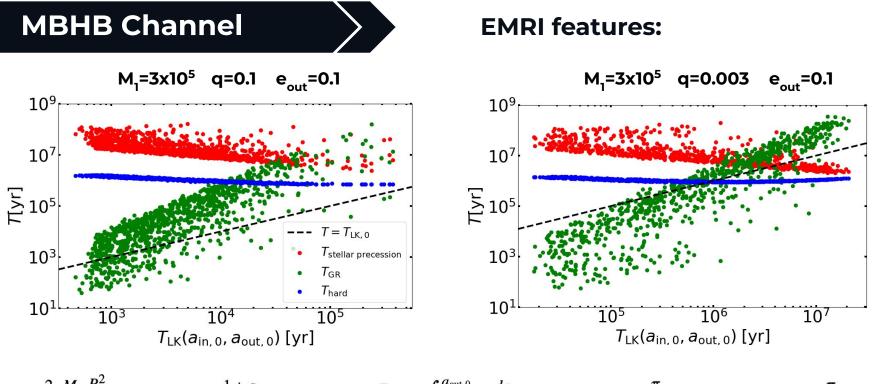
GR precession

$$\delta\omega_{\rm GR} = \frac{6\pi G(M_1 + m_3)}{a_{\rm in}(1 - e_{\rm in})^2 c^2} + \frac{3\pi G^2 (18 + e_{\rm in}^2)(M_1 + m_3)^2}{2a_{\rm in}^2 (1 - e_{\rm in}^2)^2 c^4}$$

Hardening equations

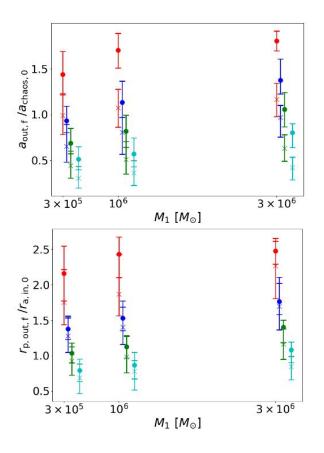
$$\begin{cases} \dot{a} = -a^2 \frac{G\rho H}{\sigma} \\ \dot{e} = a \frac{G\rho HK}{\sigma} \end{cases}$$


Stellar hardening


$$\dot{a} = -a^2 \frac{GH\rho}{\sigma}$$
$$\dot{e} = a \frac{GHK\rho}{\sigma}$$

We need to initialise the system into hierarchical configuration, but we also want to be efficient and we start integration at

$$a_{\text{out}} = 2a_{\text{chaos}}(a_{\text{in}}, e_{\text{out}})$$


the initial eccentricity is chosen at binary formation thus we assign the eccentricity according to the hardening tracks

 $T_{\rm LK} = \frac{2}{3\pi} \frac{M_1}{M_2} \frac{P_{\rm out}^2}{P_{\rm in}} (1 - e_{\rm out}^2)^{3/2} \propto \frac{1 + q}{q}. \qquad T_{\rm hard} = \frac{\sigma_{\rm inf}}{G\rho_{\rm eff, inf}} \int_{a_{\rm in,0}}^{a_{\rm out,0}} \frac{da}{a^2 H(a)}, \qquad T_{\rm GR} = \frac{\pi}{\delta\omega_{\rm GR}} P_{\rm in}, \qquad T_{\rm star} = \frac{\pi}{\delta\omega_{\rm star}} P_{\rm in},$

Simulation outcomes

$M_1 = 3 \times 10^5 M_{\odot}$		EMRIs	DPs	Swap	Ejections	Unresolved
q	eout,0					
0.1	0.1	1044	2466	7568	8921	1
	0.7	294	157	6937	12613	0
0.03	0.1	1185	2279	4923	11608	5
	0.7	379	211	5432	13978	0
0.01	0.1	1001	1180	4797	13012	10
	0.7	612	399	5237	13751	1
0.003	0.1	799	584	5958	12616	43
	0.7	1094	558	5590	12750	8
$M_1 = 10$	$0^6 M_{\odot}$	EMRIs	DPs	Swap	Ejections	Unresolved
q	eout,0	ENIKIS	DFS	Swap	Ejecuolis	Unresolved
0.1	0.1	272	2391	8031	9324	0
	0.7	140	206	7016	12638	0
0.03	0.1	247	2194	5379	12180	0
	0.7	201	283	5441	14075	0
0.01	0.1	2 <mark>6</mark> 5	1231	5020	13480	4
	0.7	348	518	5338	13796	0
0.003	0.1	386	683	6315	12606	10
0.005	0.7	615	737	6011	12631	6
$M_1 = 3$	$\times 10^6 M_{\odot}$	EMRIs	DD	0	D ¹	
q	eout,0	EMRIS	DPs	Swap	Ejections	Unresolved
0.1	0.1	50	2115	8515	9320	0
	0.7	71	282	6837	12810	0
0.03	0.1	53	1851	5704	12391	1
	0.7	85	335	5563	14017	0
0.01	0.1	60	1059	5498	13383	0
	0.7	181	602	5391	13825	1
0.003	0.1	140	844	6770	12245	1
	0.7	and a second second	922			0

 Table 1. Final outcomes of the simulations divided according to the mass of the primary, the mass-ratio and the initial outer eccentricity. The last column contains the number of simulations that kept reaching the integration time limit of 150 minutes after three restarts, which are discarded.