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solved problem:
how do we study the pre-disk stage of evolution?




Expected early evolution of the Milky Way from models

The model predictions shown in the right panel below indicate that in-situ stars with [Fe/H] < -1 formed more than 10 Gyr

ago (cf. also Kruijssen et al. 2019; Agertz et al. 2021).
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Chaotic pre-disk stage and disk “spin-up” 8-11 Gyrs ago
are generic in galaxy formation simulations
Belokurov & Kravtsov 2022, MNRAS 514, 689
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Figure 17. Median tangential velocity of stars in the Latte and Auriga simulations as a function of stellar age (left-hand panel) and metallicity (right-hand
panel). The solid coloured lines show median curves for nine simulated Milky Way-sized galaxies, as indicated in the legend. The black dashed line shows the
median measurement for the Milky Way obtained using the APOGEE DR17 data with shaded grey area representing 68 per cent uncertainty.



distribution of gas density and
temperature
at different stages of evolution,
magenta green color T~104-10° K;
red: T~106 K

Credit:
FIRE collaboration

http://www.tapir.caltech.edu/~phopkins/Site/Movies_cosmo.html



What is the physics of the transition from the turbulent
pre-disk stage to disk formation?

Still debated, but disk formation appears to coincide with halo mass reaching ~2x10%! Msun and development of hot gaseous
halo. Large mass confines the outflows and limits their disruptive effects, while hot halo mediates accretion of gas that
creates conditions conducive to formation and survival of coherent disk (e.g., Dekel et al. 2020; Stern et al. 2021;

Gurvich et al. 2022; Hafen et al. 2022)

Distribution of gas density and temperature at different stages of evolution, magenta green color T~104-10° K; red
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density of stars

pau(r) Mg /kpc®

Radial density profile of the low-metallicity in-situ stars

Is similar in different Milky Way-sized galaxies and is well described by the “lowered isothermal
profile” (e.g., King 1966; Gomez-Leyton & Velazquez 2014; Gieles & Zocchi 2015 MN 454, 576)

in-situ stars only [Fe/H] < —1
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Radial density profile of the accreted stars exhibits
considerably more variation for different MW-sized galaxies

- typical half-mass; radius ~15-25 kpc
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Projected radial density profile
of the low-metallicity in-situ stars (the Aurora component)
is predicted to be nearly the same for different objects and different metallicity ranges

Kravtsov & Belokurov, in prep
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Galactic Latitude [°]

Approximately spheroidal distribution of low-Z in-situ stars
was recently observed

IM/H] > -0.4
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Rix et al. 2022 (arXiv/2209.02722)



Summary:

Observations show that Milky Way disk forms when metallicity of stars reaches ~0.1 solar
(Vasily Belokurov’s talk)

Lower metallicity in-situ stars are a new stellar component of the Milky Way (the Aurora)
and probe chaotic pre-disk stages of Milky Way evolution

In models disk forms at lookback times of 10-12.5 Gyrs ago (or z~2-5)

Current galaxy formation simulations seem to predict disk formation at higher
metallicities and later times: either Milky Way is unusual or simulations are
systematically getting disk formation wrong. Need to check with larger samples.

The low-metallicity in-situ stars are predicted to have spheroidal morphology with a
“lowered isothermal” density profile. Spheroidal morphology has been confirmed in
observations, predicted density profile is yet to be tested by observations.

Belokurov & Kravtsov 2022, MNRAS 514, 689 Kravtsov & Belokuroy, in prep
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Age distribution of stars in different metallicity slices
forming in galaxy formation simulations

Belokurov & Kravtsov 2022, MNRAS 514, 689
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Figure 15. Age distributions of stars with metallicities [Fe/H] = —0.3 £+ 0.025, —0.9 £ 0.025, —1.5 £ 0.025 in the nine simulated MW-mass galaxies from
the Latte and Auriga simulations. In both simulation suites stars are selected within 5 < R/kpce < 11 and |Z| < 3 kpe.



Gas and young stars distribution in high-z Milky Way progenitors tends to
be chaotic and turbulent in different galaxy formation simulations

e.g., McCarthy et al. 2012; Tillson et al. 2015; Pillepich et al. 2019
Meng & Gnedin 2021; Kretschmer et al. 2022
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