Palla László

Palla László

emeritusz professzor

PhD (Eötvös Loránd Tudományegyetem, Budapest, 1975)

Az MTA doktora (1991)

Elméleti Fizikai Tanszék

Szoba: Északi tömb 1.107
Telefon: +36-1-372-2704
Mellék: +36-1-372-2500 / 6204
Mobilszám: n.a.
Honlap: elmfiz.elte.hu
Emailcím: uh.etle.raseac@allap

Biográfia:

Research Interest Monopole solutions of the spontaneously broken gauge theories; Spontaneous compactification and dimensional reduction in Einstein Yang Mills mod
Research Interest Monopole solutions of the spontaneously broken gauge theories; Spontaneous compactification and dimensional reduction in Einstein Yang Mills models; String theory ; Conformal field theory; 2+1 dimensional Chern Simons gauge theories; Duality in σ models; Nonperturbative investigation of two dimensional quantum field theories, Integrability in gauge and string theories, AdS/CFT

Previous positions
Visiting Scientist CERN, Theory Division 1982-1983
Visiting professor Dept. of Mathematics, Univ. of DURHAM (UK) 1987 and 1989-1990
Visiting professor Dept. of Math. and Theor. Phys. Univ. TOURS 1994

Prizes
Novobátzky prize (Eötvös Loránd Phys. Soc.) 1981.
Prize of the Hungarian Academy of Sciences (HAS) 1985. (awarded jointly)
Széchenyi professorship 1997-2000.

Committee membership
IUPAP C18 (Mathematical Physics) Commission Member 1999-2001.
OTKA Inorganic College member 2000-2003.
Particle Physics’s elected member in the D.Sc committee of the Physics Dept. of H.A.S. 1999-2005.

Tudományos adatbázisok profiloldalai:

Az utolsó 5 év válogatott közleményei:

  1. Z. Bajnok, N. Drukker, Á. Hegedüs, R. I. Nepomechie, L. Palla, C. Sieg and R. Suzuki, “The spectrum of tachyons in AdS/CFT,” JHEP 1403 (2014)
  2. Z. Bajnok, M. Kim and L. Palla, “Spectral curve for open strings attached to the Y=0 brane,” JHEP 1404 (2014) 035 34 pp.
  3. T. Gombor, and L. Palla, “Algebraic Bethe Ansatz for O(2T. Gombor, and L. Palla, “Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries” JHEP 1602 (2016) 158 33pp.N) sigma models with integrable diagonal boundaries” JHEP 1602 (2016) 158 33pp.
  4. I. Aniceto, Z. Bajnok, T. Gombor, M. Kim and L. Palla, “On integrable boundaries in the 2 dimensional O(N ) σ-models,” J. Phys. A 50 (2017) no.36, 364002